

Smart Working Environments for All Ages

D6.1 Ontology

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N. 826232

The content of this deliverable does not reflect the official opinion of the European Union. Responsibility for the information and views expressed therein lies entirely with the author(s)

WP6 – Data Analysis

D6.1 – Ontology

Project number:	826232
Project acronym:	WorkingAge
Project title:	Smart Working Environments for All Ages
Author(s):	UCAM & POLIMI
Partners contributed:	UCAM, POLIMI, BS, INTRAS, RWTH, MUTUA
GA Delivery date:	M21 (Nov 2020)
Document date:	30/11/2020
Version:	1
Revision:	7
Deliverable type:	Report
Remarks:	
Status:	 O PU (Public) O PP Restricted to other programme participants (including the Commission Services) O Restricted to a group specified by the consortium (including the Commission Services) (please specify the group) O Confidential, only for members of the consortium (including the Commission Services)

Document Revision Log

VERSION	REVISION	DATE	DESCRIPTION	AUTHOR
1	0	04/05/2020	First incomplete version of Ontology	T. Xu (UCAM), R. Tedesco (POLIMI), V. Rick (RWTH), H. Gunes (UCAM)
1	1	13/08/2020	First version of Ontology	T. Xu (UCAM), R. Tedesco (POLIMI), A. G. Aberturas (INTRAS)
1	2	05/09/2020	Update based on review and feedback from MUTUA	T. Xu (UCAM), R. Tedesco (POLIMI
1	3	16/11/20	First complete draft of report	H. Gunes (UCAM)
1	4	20/11/20	Feedback and new content incorporated	H. Gunes (UCAM), V. Roca (BS), A. G. Aberturas (INTRAS)
1	5	26/11/20	Second round of feedback incorporated	H. Gunes (UCAM), V. Roca (BS), A. G. Aberturas (INTRAS)
1	6	30/11/20	Final set of feedback incorporated	H. Gunes (UCAM), V. Roca (BS), A. G. Aberturas (INTRAS), M. van Gasteren (ITCL)
1	7	30/11/20	Final review and formatting	M. van Gasteren (ITCL)

Executive Summary

This Deliverable gives an overview of the WorkingAge Ontology developed in Task 6.1.

Section 1 provides a generic introduction including the motivations and the ontology concept, together with the specific languages employed for the development. Section 2 specifically focuses on the WorkingAge Ontology in terms of its elements of worker, profile, advice, task, sensors and smart goals and provides visual depictions of these for clarity. Section 3 goes into technical details of the implementation using OWL and Protégé and describes how reasoning is achieved. Section 5 describes the data sources in terms of characterisation and measurements. Section 6 summarises the conclusions and Section 7 provides possible future work.

Table of Contents

E>	<i>vecutiv</i>	/e Summary4
1	Bac	kground and Introduction7
	1.1	Motivation and Introduction7
	1.2	The OWL language7
	1.3	Graphical Language
2	The	WorkingAge Ontology10
	2.1	Worker10
	2.2	Profile
	2.3	Advice
	2.4	Task11
	2.5	Sensor12
	2.6	Smart Goal and Goal State14
	2.7	Adding individuals15
3	OW	'L and Protégé17
4	Rec	asoning
5	Dat	a sources19
	5.1	Characterisation
	5.2	Measurements and the Ontology19
6	Cor	nclusions
7	Futu	Jre Work
8	Ref	erences

List of Figures

Figure 1. Worker, with related Classes	10
Figure 2 Task, with related Classes	12
Figure 3 Sensor, with related Classes	13
Figure 4 Smart Goal, with related Classes	14
Figure 5 Two measurements of emotion, based on voice recordings	16

List of Tables

Table 1 Measurements and related sensors	19
Table 2 Subjective vs objective; subject vs environmental measurements	20
Table 3 Measurements and use cases (X: only workers with home extension list)2	21
Table 4 Number of subjects involved in measurements. All: all subjects involved in th use case (also equipped with the home standard sensor list); Some: sub-jects who agreed to be equipped with home standard + home extension sensor lists	
Table 5 Measure frequency (in terms of the derived High-level information put into	21
	22
Table 6 Calculating attributes; Worker-related 2	23
Table 7 Calculating attributes; Task-related	24
Table 8 Calculating attributes; Smart goals	24
Table 9 Calculating attributes; Sensors	25
Table 10 Calculating attributes; Questionnaires	27

1 Background and Introduction

1.1 Motivation and Introduction

The WAOW Tool provides advices to the users by means of a Decision Making System (DSS) based on logic rules. Such rules predicate on the content of a Knowledge Base (KB) defined as an OWL¹ Ontology. The WA Ontology defines eight main aspects:

- **Worker** is the "core" of the WA Ontology, modelling workers' personal information. Besides, Worker is connected to other concepts shown below.
- Profile contains the personal information of the worker.
- Task defines the characteristics of the job performed by a worker.
- **Sensor** describes information we extract from sensors we'll deploy.
- Smart Goal describes the aims that the workers are suggested to achieve.
- **Goal State** is closely connected to Smart Goal, which shows the worker's progress towards the personalized Smart Goal.
- Advice defines the suggestions that can be provided to workers, to improve their working and living condition.
- **Feedback** is provided by workers, to understand their attitude towards the advice and WA tool.

•

We decided to adopt such a model-driven approach, instead of more common data-driven methods, for two main reasons: lack of data for training a good model, and avail-ability of good experts who provided their experience for defining both the WA Ontology and the logic rules.

In the following, we briefly introduce the "building blocks" of the OWL language and describe the content of the WA Ontology.

1.2 The OWL language

An ontology is a formal definition of concepts belonging to a domain; OWL provides a formalism based on Description Logic, where concept is described as:

- **Classes:** a concept is represented as a Class if it is a set; for example, the concept Worker can be represented as a set, since it will contain the set of workers followed by the WA Tool.
- Individuals: a concept is represented as an Individual if it is an element of a set; for example, John is an individual as it could be an element of the Class Worker.
- Attributes: a concept is represented as an Attribute if it can be seen as a simple attribute of Individuals belonging to a Class; for example, adopting a theory of emotion based on the pair arousal/valence, an Individual belonging to the Class ContinuousEmotion could exhibit two Attributes: arousal and valence.

¹The Web Ontology Language (OWL) is a W3C specification and is part of the W3C's Semantic Web technology stack; see: https://www.w3.org/OWL/.

• **Data Type:** this is a predefined collection of types that will characterize any Attribute and define the legal values; for example, arousal and valence could be of Data Type: Integer from 1 to 9.

Being a restriction of RDF², the OWL language is based on *triples* and stored as XML files. For the sake of simplicity, however, the following Classes and Individuals will be represented as nodes of a graph (rectangles will represent Classes while ovals will identify Individuals). The arcs of such graph are called *Relationships*. The labels we put on the arcs represent the semantics of the Relationship. In the following we'll make use of some "predefined" Relationships (which carry OWL-defined semantics), such as:

- **instanceOf:** connects an Individual to the Class it belongs to; for example, John instanceOf Worker
- **isA:** connects a Class to its super-class; for example, BodySensor isA Sensor (in other words, BodySensor is a subset of the set Sensor)

Apart from these relationships, new relationships can be introduced, where the semantic is basically represented by the label used to name them. For example, Worker isWorkingOn Task.

In the following, we show Classes, Attributes, and Relationships, which provide the WA Ontology "schema". Such representation will be stored as an XML file. Whenever new data is added to the WA Ontology -a new sensor measure, a new worker, etc.one or more Individuals will be added and stored in a specialised database (DB) (we are currently testing Apache Jena Fuseki³.

Finally, note that the WA Ontology permits to retrieve two different views on data:

- **State:** it represents the current state of some Concept; for example, the current emotive state of a given worker.
- **History:** it represents the past state of some Concept; for example, the list of emotive states of a given worker.

Both views are useful and will be exploited by the rules in charge of generating advice. In practice, we added the notion of *timestamp* to all Classes whose Individuals will represent a time series of data (e.g. sensor measurements).

1.3 Graphical Language

The OWL ontology will be described by means of a simple graphical language. Components:

• Rectangles: used for classes; the label into the rectangle is the class' ID (must be unique).

² The Resource Description Framework (RDF) is the W3C's standard model for data interchange on the Web; see: https://www.w3.org/RDF/. ³ See: https://jena.apache.org/documentation/fuseki2/

- Ovals: used for individuals; the table into the oval is the individual's ID (must be unique).
- Pins: used for attributes (datatype properties, in OWL wording)
 - $_{\circ}$ $\,$ The attribute name is specified with a label.
 - The default arity of the attribute is 1 (one and only one attribute with that label must be present).
 - Attributes that can appear multiple times are marked with a number n; this means that exactly n attributes with the same label must be present).
 - There are two types of pin, white and black.
 - White pin: the attribute with that label must present.
 - Black pin: at least one of the attributes within the same class must present each time.
- Arcs: used for relationships (object properties, in OWL wording)
 - Arcs connect a Domain class to a Range class.
 - Arcs are named by means of IDs (i.e., labels that must be unique)
 - Relationships can belong to the following typologies:
 - 1-to-1: the default typology
 - 1-to-N: the party that can appear multiple times is marker as "0..N" (if it is optional) o "1..N" if at least one must be present
 - N-to-N: both parties are marked as "0..N" (if optional) o "1..N" if at least one must be present.
 - Some relationship typologies are defined by the language:
 - isA: the subclass object property. The sibling subclasses are disjoint and exhaustive (i.e., they constitute a partition of their superclass).
 - InstanceOf: connects an individual to the corresponding class.

2 The WorkingAge Ontology

For the sake of simplicity, the WA Ontology is divided into six parts; in the following we provide a brief description for all of them.

2.1 Worker

The Class Worker, depicted in Figure 1, is defined with some basic Attributes, like UserID and AddOnDate. Note that UserID is used as a key attribute that is identical for each worker on the system.

Worker is connected to Profile, Task, Sensor, Advice, Feedback and SmartGoal, which represents the information flow at the run time, about the workers.

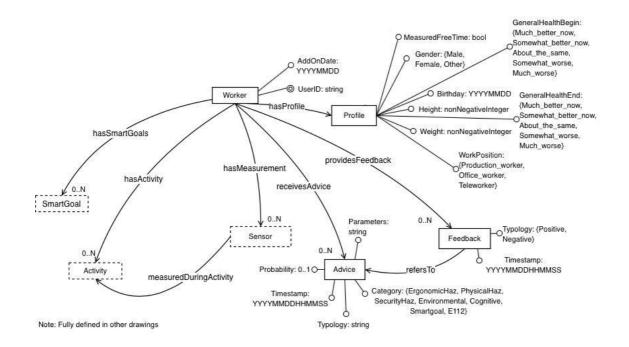


Figure 1. Worker, with related Classes.

2.2 Profile

The Class Profile, depicted in Figure 1, contains the static personal information of the worker, such as Gender, Birthday, HeightWeight, WorkPosition, GeneralHealthBegin, GeneralHealthEnd, and MeasuredFreeTime. The Health-related attributes provide the general description of the worker's health condition before and after participating the WorkingAge project.

2.3 **Advice**

The Class Advice and Feedback are depicted in Figure 1. Advice has five Attributes: Timestamp, Typology, Category, Parameters and Probability; Typology contains a label indicating a suggested action, for example "Change_pose"; Category contains a label showing under what circumstances the advice is needed (e.g. "ErgonomicHaz": when Ergonomic Hazard is detected, advice will be provided); Parameters contains an optional comma-separated list of parameters (e.g., the current heartbeat "150").

Notice that the Typology label is not meant to be shown to the worker: once defined the list of possible typology labels, a localized conversion file will permit to transform the label (with all the parameters, if any) into a human-readable message; for example, starting from "Call_E112" and "150", if the localized conversion file contains a row formatted as

"Call_E112 Cardiac anomaly detected; heartbeat: #1. The system is going to call the E112 service"

the following sentence could be generated:

"Cardiac anomaly detected; heartbeat: 150. The system is going to call the E112 service".

Feedback has two Attributes: Timestamp and Typology; Typology provides information about whether the Feedback towards the advice is positive or negative.

Worker receives Advice from WA tool, while the Worker can also provide Feedback to WA tool. According to the Feedback, it is possible to adjust the Advice to better serve Worker.

2.4 **Task**

This Class describes basic pieces of information we need to collect about a job (see Figure 2).

So far, we described three job typologies: Office, Assembly, and Teleworking, as the WA project previews such use cases. The FreeTimeAtHome Class refers to off-work home activities, as the WA project aims at considering the whole daily life of the worker.

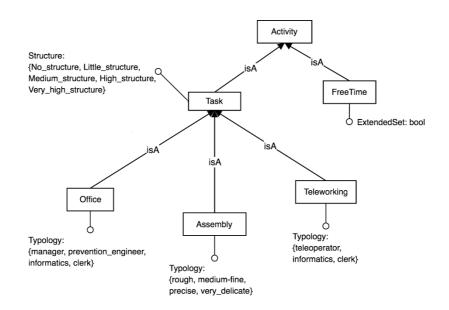
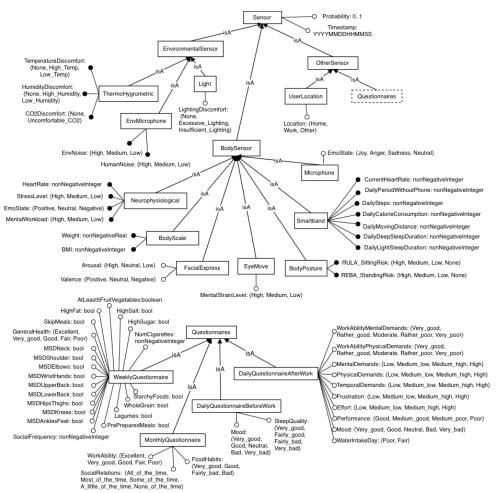


Figure 2 Task, with related Classes.

2.5 **Sensor**

As Figure 3 shows, this Class is the root of the most complex taxonomy in the WA Ontology. Here, we describe the characteristics of information we can derive from sensor measurements.

Sensors are divided into three main groups:


- Sensors that measure the environment
- Sensors that measure the worker's body
- Other sensors

The Class EnvironmentalSensor is the root of sensors that collect data from the environment. The subclass ThermoHygrometric measures the temperature, humidity and CO2 concentration discomfort. The subclass EnvMicrophone measures the environmental and human noise level. Light measures the illumination level.

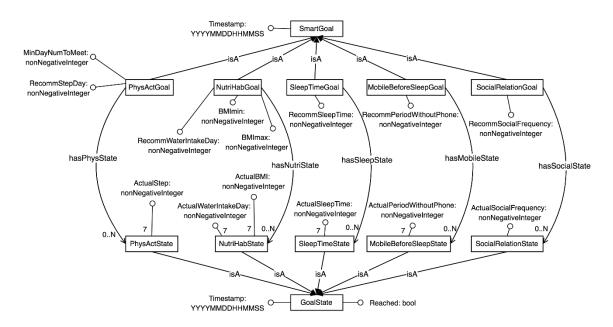
The Class BodySensor is the root of wearable sensors, which collect a vast variety of data, such as wearable bio-metric devices (for example, ECG and GSR), cameras (for example, body posture, facial expression and eye movements), and microphones (voice recording), etc. From such sensors we can derive several information. Below is the full list of the information that can be derived from each body sensor.

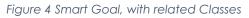
- Neurophysiological: Stress Level, Emotional State, Mental Workload, Heart Rate
- FacialExpress (Facial Expression): Arousal, Valence
- EyeMove (Eye Movement): Mental Strain Level
- BodyPosture: Sitting Risk (RULA), Standing Risk (REBA)

Figure 3 Sensor, with related Classes.

Smartband: Current Heart Rate, Period Without Phone before sleeping⁴, Steps in a day, Calorie Consumption in a day, Moving Distance in a day, Deep Sleep Duration in a day, Light Sleep Duration in a day

- Microphone: Emotional State
- BodyScale: Weight, BMI


The Class OtherSensor is currently used to represent collected information that does not belong to the environmental and body sensor, such as UserLocation and Questionnaires. The Class UserLocation defines the location information coming from GPS and/or indoor positioning systems. The Class Questionnaires will be regularly administered to workers, to understand their current states, as a special case of "sensors". Currently there are four categories of the Questionnaires which are listed below.


⁴ In our current implementation, this one and the other "daily" attributes are updates in the morning, so they refer to the day before the one indicated by the timestamp.

- DailyQuestionnaireBeforeWork (Daily Questionnaire Before Work): Mood, Sleep Quality
- DailyQuestionnaireAfterWork (Daily Questionnaire After Work): Work Ability Mental Demands, Work Ability Physical Demands, Mental Demands, Physical Demands, Temporal Demands, Frustration, Effort, Performance, Mood, Water Intake per Day
- WeeklyQuestionnaire (Weekly Questionnaire): General Health, MSD⁵ neck, MSD Shoulder, MSD Elbows, MSD Wrist Hands, MSD Upper Back, MSD Lower Back, MSD Hips Thighs, MSD Knees, MSD Ankles Feet, Social Frequency, Skip Meals, High Fat, High Salt, High Sugar, Whole Grains, Legumes, Pre-Prepared Meals, Starchy Foods, At Least 5 Fruit Vegetables, Num. Cigarettes
- MonthlyQuestionnaire (Monthly Questionnaire): Work Ability, Food Habits, Social Relations

Note the Timestamp Attribute, which permits to extract a history of measures associated to a give worker, which is another part of the current state of a worker. The Attribute Probability indicates the confidence level of the sensor outputs.

2.6 Smart Goal and Goal State

According to the worker's situation, SmartGoal will be set for individuals. These personalized goals can help worker keep healthy lifestyle and improve their

⁵ Musculoskeletal Disorder (MSD) risk.

working and living condition. The five aspects of the Smart Goal are shown below.

- PhysActGoal (Physical Activity Goal): Recommended Steps per Day, Min Daily Steps to Meet
- NutriHabGoal (Nutrition Habits Goal): Recommended Water Intake per Day, BMI min, BMI max
- SleepTimeGoal (Sleep Time Goal): Recommended Sleeping Time
- MobileBeforeSleepGoal (Mobile phone Usage Before Sleep Goal): Recommended Period Without Phone
- SocialRelationGoal (Social Relations Goal): Recommended Social Frequency
- The Class GoalState is to show the worker's progress towards the set Smart Goal. Each subclass of Smart Goal has a corresponding Goal State class, as shown in Figure 4.

The Smart Goals will be assessed along the experimental phases of the project for each user. The relationship between the sensors and the Smart Goals is shown below.

- PhysActState (Physical Activity State): it will be assessed considering the high-level information provided by the Xiaomi Mi Band 4, the smartband. It will be assessed considering the number of steps.
- NutriHabState (Nutrition Habits State): it will be assessed considering the high-level information (i.e. Actual BMI) provided by the Xiaomi Mi Scale, the smart balance. The questionnaire will provide the information on the Actual Water Intake per Day.
- SleepTimeState (Sleeping Time State): it will be assessed considering the high-level information provided by the Xiaomi Mi Band 4, the smartband. It will be assessed considering the sleep duration.
- MobileBeforeSleepState (Mobile phone Usage Before Sleep State): it will be assessed considering the Android information related to the screen usage.
- SocialRelationState (Social Relations State): it will be assessed considering the questionnaires provided through the WA mobile app.

2.7 Adding individuals

So far, we described the "schema" of the WA Ontology. But, at run time, the WA Ontology should be populated by Individuals (new workers, new sensor measurements, new tasks, new social environments.)

Figure 5 shows a possible example, where a new worker is added to the WA Ontology. Then, two measures of emotion are added, starting from voice recordings; in practice, two new Individuals of Microphone are added to the WA Ontology, each of them named with an UUID. Note the arcs connecting the

worker to its measurements. Moreover, note that the two measurements are marked with a timestamp; thus, we can reconstruct the history of emotions expressed by the worker so far, as well as her/his "current emotive state" (i.e., the last measured emotion).

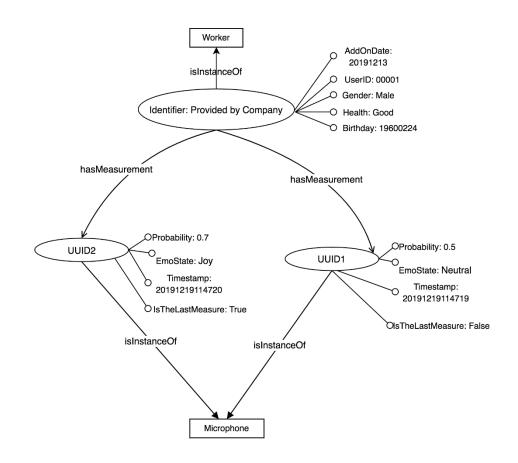


Figure 5 Two measurements of emotion, based on voice recordings.

In order to improve efficiency, Individuals are directly inserted into the ProbLog engine, which oversees performing reasoning.

3 OWL and Protégé

Implementation details about the WA Ontology implementation using OWL by means of the Protégé editor.

General axioms:

Each class in the taxonomy is defined as a "Disjoint Union Of" its offspring classes (i.e., sibling classes constitute a partition of their parent class).

Attribute axioms:

Attribute userID of class Worker is defined as a "Target for Key": basically, it is defined as a unique key.

4 Reasoning

As mentioned at the beginning of this report, a set of rules will be used to perform reasoning and derive the advice and the suggestions that will be provided to the workers.

From the beginning we chose to describe our Knowledge Base (KB) as an Ontology, and an OWL-based Ontology. OWL is the *de-facto* standard for describing Ontologies, and very useful tools exist that support authoring of OWLbases Ontologies. We chose to use Protégé, which provides a powerful and extensible environment. As OWL is a well-known and well-supported language, exporting our Ontology to other formats would be easy.

Powerful libraries exist that enable the manipulation of the Ontology using several programming languages. Initially we considered using SWRL, which is part of the OWL specification and can directly work on the OWL Ontology. Unfortunately, SWRL is not well suited for working with probabilistic information. Some of the measurements extracted from the sensors are probabilistic; as an example, the emotional state of Microphone is calculated by a statistical classifier that provides a probability associated with the emotion class it predicts. Due to this, we switched to ProbLog, which can deal with such probabilistic information and can perform probabilistic reasoning.

5 Data sources

5.1 Characterisation

The following tables, from Table 1 to Table 1, which derive from D2.5, describe data sources in terms of measurements, sensors, WA partner responsible for that data collection and management, etc.

5.2 Measurements and the Ontology

In this section, tables from Table 6 to Table 10 describe how each Ontology attribute should be calculated, by means of the measurements described above.

Each Ontology⁶ attribute is associated to a measurement (i.e., an information source), which is calculated starting from raw-data provided by a sensor (i.e., a data source). Table 1 shows the relationship between measures and sensors.

In the following tables, for each attribute belonging to the Ontology, we provide how its value is calculated⁷.

Measurement	Sensor
Heart activity	ECG (Empatica wristband)
Galvanic Skin Response	GSR (Empatica wristband)
Brain activity	EEG headband
Facial expression	Camera #1
Voice analysis	Unidirectional, noise-cancelling mic
Eye blink detection	Headband or Camera #1 (*)
Eye movement, pupil diameter	Eye tracker
Body posture	Camera #2
Gesture recognition (**)	Camera #1
User location	Via smartphone

Table 1 Measurements and related sensors

⁶ In synch with the content of the OWL file "workingage-v4.2.4.owl" and the PNG images.

⁷ For questionnaires, see "T3.1 Questionnaires Ontology INTRAS.xlsx"

Sleep duration and quality	Smartband			
Step meter	Smartband			
Heart rate	Smartband			
Weight	Body scale			
ВМІ	Body scale			
Questionnaires (***)	Questionnaires on WA App			
- Daily (before work)				
- Daily (after work)				
- Weekly				
- Monthly				
- Static (profile)				
Noise Omnidirectional microphone				
- Environmental				
- Human				
Lux, thermo-hygrometric, CO ₂	Environment Condition sensor			
(*) To be decided according to the In-	Lab tests results.			
(**) Only for controlling the WA App UI. Removed from following tables.				
^(***) Multiple measurements on work environment and working conditions; cognitive, emotional and social aspects; nutrition, sleep, exercise; dynamic and kinesthetics characteristics of the task, etc.; about day-to-day social interaction; initial interview.				

Table 2 Subjective vs objective; subject vs environmental measurements

Measurements	Objective / Subjective	Subject / Environment
Heart activity	0	S
Galvanic Skin Response	0	S
Brain activity	0	S
Facial expression	0	S
Voice analysis	0	S
Eye blink detection	0	S
Eye movement, pupil diameter	0	S
Body posture	0	S
User location	0	S

-1

Sleep duration and quality	0	S
Step meter	0	S
Heart rate	0	S
Weight	0	S
ВМІ	0	S
Questionnaires	S	S
Noise	0	E
Lux, thermo-hygrometric, CO2	0	E

Table 3 Measurements and use cases (X: only workers with home extension list)

	Use cases				
Measurements	Office	Teleworking	Manufacturing	Daily life	
Heart activity	\checkmark	✓	✓	X	
Galvanic Skin Response	\checkmark	✓	✓	X	
Brain activity	\checkmark	✓	✓	X	
Facial expression	\checkmark	✓	 ✓ 	X	
Voice analysis	\checkmark	✓	-	X	
Eye blink detection	\checkmark	✓	✓	X	
Eye movement, pupil diameter	\checkmark	✓	✓	-	
Body posture	\checkmark	✓	✓	X	
User location	\checkmark	✓	✓	X	
Sleep duration & quality	_	_	-	✓	
Step meter	\checkmark	✓	✓	 ✓ 	
Heart rate	\checkmark	✓	✓	 ✓ 	
Weight	_	-	-	✓	
BMI	_	_	-	✓	
Questionnaires	✓	✓	✓	✓	
Noise	\checkmark	✓	✓	X	
Lux, thermo-hygrometric, CO ₂	✓	✓	✓	X	

Table 4 Number of subjects involved in measurements. All: all subjects involved in the use case (also equipped with the home standard sensor list); Some: sub-jects who agreed to be equipped with home standard + home extension sensor lists

Measurement	Per Use case	Daily life (all use cases)
Heart activity	3 subjects	Some, max. 9 subjects

		1		
Galvanic Skin Response	3 subjects	Some, max. 9 subjects		
Brain activity	2 subjects	Some, max. 6 subjects		
Facial expression	All	Some		
Voice analysis	AII(*)	Some		
Eye blink detection	All / 2 subjects ^(**)	Some / Some, max. 6 subjects ^(**)		
Eye movement, pupil diameter	1 subject	-		
Body posture	All	Some		
User location	All	Some		
Sleep duration and quality	-	All		
Step meter	All	All		
Heart rate	All	All		
Weight	-	All		
BMI	-	All		
Questionnaires	All	All		
Noise	All	Some		
Lux, thermo-hygrometric, CO ₂	All	Some		
(*) Excluding the "Factory" use case.				

^(**) In case the headband is used, only 2 subjects will be monitored per use case; in case the camera is used, there is no constraint.

Table 5 Measure frequency (in terms of the derived High-level information put into the Ontology); WA personnel needed?

Measurements	Frequency or event	Attended/ Unattended	Owner
Heart activity, Galvanic Skin Response, brain activity	8 Hz; 1/min (++)	U	BS
Facial expression	1/min (+)	U	UCAM
Voice analysis	Event: after each utterance	U	POLIMI/AUD
Eye blink detection	1/min	U	BS
Eye movement, pupil diameter	1/min ^(*)	A	RWTH
Body posture	1/s	U	ITCL
User location	On location	U	TPZ

	change (+++)		
Sleep duration and quality	1/day (***)	U	ITCL
Step meter	1/day (***)	U	ITCL
Heart rate	1/min	U	ITCL
Weight	User specified	U	ITCL
BMI	User specified	U	ITCL
Questionnaires:		U	INTRAS
- Daily (before work)	1/day		
- Daily (after work)	1/day		
- Weekly	1/week		
- Monthly	1/month		
- Static (profile)	once		
Noise	1/min	U	AUD
Lux, thermo-hygrometric, CO2	Events: sensor out of threshold ranges for at least 30 minutes; sensor back within threshold.		ITCL

rate (for the E112 service experiment), max freq is 8 Hz.

(+++) The positioning algorithm is sampled 1/min, but the High-level info is generated only when the position is changing.

(+) Or more, if needed.

(*) Up to 200 Hz, if needed.

(***) Sensor sampled every 30 minutes; High-level info sent every day.

Class: Attribute	Measure and calculation
Worker:	
AddOnDate	WA App login process (the current day)
UserID	WA App login process (provided by the worker)

P		
Profile:		
Gender	Static questionnaire	
BirthDate	Static questionnaire	
Height	Static questionnaire	
Weight	Static questionnaire	
WorkPosition	Static questionnaire	
GeneralHealthBegin	SF36, static questionnaire, Health_OneYear	
GeneralHealthEnd	SF36, static questionnaire, Health_OneYear	
MeasuredFreeTime	Static questionnaire	
Advice:		
Probability	Generated by the DSS	
Timestamp	Generated by the DSS	
Typology	Generated by the DSS	
Category	Generated by the DSS	
Parameters	Generated by the DSS	
Feedback:		
Typology	From the WA App UI for feedback mngt	
Timestamp	Generated by the WA App: current time	

Table 7 Calculating attributes; Task-related

Class:Attribute	Measure and calculation
Activity: -	none
Task: Structure	Static questionnaire
FreeTime: ExtendedSet	Static questionnaire
Office: Typology	Static questionnaire
Assembly: Typology	Static questionnaire
Teleworking: Typology	Static questionnaire

Table 8 Calculating attributes; Smart goals

Class:Attribute	Measure and calculation
-----------------	-------------------------

SmartGoal:	Current timestamp	
Timestamp		
MobileBeforeSleepGoal:	WA App, hardcoded	
RecommPeriodWithoutPhone	WA APP, hardcoded	
NutriHabGoal:	WAARD bardoodod	
BMImax	WA App, hardcoded	
BMImin	WA App, hardcoded WA App configuration; min 1.5l	
RecommWaterIntakeDay	MA App configuration, min 1.5	
PhysActGoal:		
MinDayNumToMeet	WA App configuration; min 4	
RecommStepDay	WA App configuration; min 6000	
SleepTimeGoal:		
RecommSleepTime	WA App configuration; 7.5h	
SocialRelationGoal:		
RecommSocialFrequency	WA App configuration; min 1	
GoalState:	Current timestamp	
Timestamp		
MobileBeforeSleepState:	7 measures;	
- ActualPeriodWithoutPhone	see: SmartBand:DailyPeriodWithoutPhone	
NutriHabState:	7 measures; see: BodyScale:BMI	
ActualBMI	7 answers;	
ActualWaterIntakeDay	see:	
	DailyQuestionnaireAfterWork:WaterIntakeDay	
PhysActState:	7 magauras: soo: Smarth and Stans	
ActualStep	7 measures; see: Smartband:Steps	
GoalState:	7 measure;	
ActualSleepTime	see: SmartBand:DailyDeepSleepDuration + SmartBand:DailyLightSleepDuration	
SocialRelationState:	See: WeeklyQuestionnaire:SocialFrequency	

Class:Attribute	Measure and calculation	
Sensor:	Probability of the current high-level	
Probability	info	
Timestamp	Current timestamp	
BodyPosture:		
REBAStandingRisk	Camera #2: body posture	
RULASittingRisk	Camera #2: body posture	
BodyScale:		
BMI	Body scale	
Weight	Body scale	
EyeMove:	Eye tracker (eye movement + pupil	
MentalStrainLevel	diam.)	
FacialExpress:	Comerce #1. foreigt everegién	
Arousal	Camera #1: facial expressión	
Valence	Camera #1: facial expression	
Microphone:	Unidirectional naise cancelling mic	
EmoState	Unidirectional, noise-cancelling mic	
Neurophysiological:		
HeartRate	ECG	
EmoState	ECG + GSR	
StressLevel	EEG + ECG + GSR/Eye blink detection	
MentalWorkload	EEG	
Smartband:		
DailyLightSleepDuration DailyDeepSleepDuration	Smartband	
	Smartband Smartband	
DailySteps	Smartband Smartband	
DailyMovingDistance	Smartband Smartband	
DailyCalorieConsumption	Smartband	
DailyPeriodWithoutPhone CurrentHeartRate	Smartband	
EnvMicrophone:		
HumanNoise	Omnidirectional microphone	
	Omnidirectional microphone	

Light: LightingRisk	Illumination
ThermoHygrometric: HumidityDiscomfort CO2Discomfort TemperatureDiscomfort	Environment Condition sensor Environment Condition sensor Environment Condition sensor
UserLocation: Location	Smartphone

Table 10	0 Calculating	attributes;	Questionn	aires

Class:Attribute	Questionnaire name
DailyQuestionnaireAfterWork:	
Effort	NASA-TLX
Frustration	NASA-TLX
MentalDemands	NASA-TLX
Mood	NASA-TLX
Performance	NASA-TLX
PhysicalDemands	NASA-TLX
TemporalDemands	NASA-TLX
WaterIntakeDay	Ad-hoc question
WorkAbilityMentalDemands	WAI 2
WorkAbilityPhysicalDemands	WAI 2
DailyQuestionnaireBeforeWork:	
Mood	NASA-TLX
SleepQuality	Pitsburg Sleep Quality Index
MonthlyQuestionnaire:	
FoodHabits	How Healthy Is Your Diet
WorkAbility	WAI 1 (WorkAbility)
SocialRelations	SF36

WeeklyQuestionnaire:	
GeneralHealth	SF36 (Curr_Health)
MSDAnklesFeet	NMQ
MSDElbows	NMQ
MSDHipsThighs	NMQ
MSDKnees	NMQ
MSDLowerBack	NMQ
MSDNeck	NMQ
MSDShoulder	NMQ
MSDUpperBack	NMQ
MSDWristHands	NMQ
SocialFrequency	Ad-hoc question
NumCigarettes	Ad-hoc question
AtLeast5FruitVegetables	Ad-hoc question
HighSalt	Ad-hoc question
HighSugar	Ad-hoc question
StarchyFoods	Ad-hoc question
WholeGrain	Ad-hoc question
Legumes	Ad-hoc question
PrePreparedMeals	Ad-hoc question
SkipMeals	Ad-hoc question
HighFat	Ad-hoc question
inginat	

6 Conclusions

The WA Ontology presented in this document provides the WAOW Tool with a common vocabulary all the WA partners should conform to. By doing so, whenever different partners need to share information, the WA Ontology eliminates incompatibilities. As it is defined in a formal manner, the WA Ontology is also a schema that can be used as a reference for data manipulation and therefore it is a reference for the DSS. As the WA ontology was implemented using the standard OWL language, it provides means for checking the correctness of messages exchanged among the WAOW Tool components.

Defining the WA Ontology, and implementing it with a formal language like OWL, has had other benefits during the initial steps of the WA project, i.e., it forced us to reason and precisely define the knowledge we needed to represent, in order to reach the goals of the WA project.

The WA Ontology has been shaped by the three use cases of the WA project, but most of it is generic enough to be reused in other contexts. The parts that are related to the three use cases are easily recognized and therefore can be easily edited to adapt them to new scenarios using the well-known and commonly used language OWL.

7 Future Work

For our first prototype, the WA Ontology is not employed for checking messages. We plan to add this to future versions, in order to improve the robustness of the WA communication infrastructure.

8 References

 D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, I. Thon B. Gutmann, G. Janssens, and L. De Raedt. Inference and learning in probabilistic logic pro-grams using weighted boolean formulas. Theory and Practice of Logic Programming, 15(3):358–401, 2015.