
Privacy-aware character pattern matching over outsourced
encrypted data

NICHOLAS MAINARDI∗, Politecnico di Milano – DEIB

ALESSANDRO BARENGHI∗, Politecnico di Milano – DEIB

GERARDO PELOSI∗, Politecnico di Milano – DEIB

Providing a method to efficiently search into outsourced encrypted data, without forsaking strong privacy guarantees, is a

pressing concern rising from the separation of data ownership and data management typical of cloud-based applications.

While several existing solutions allow a client to look-up the occurrences of a substring in an outsourced document collection,

the practical application requirements in terms of privacy and efficiency call for the improvement of such solutions. In this

work, we present a privacy-preserving substring search protocol with a polylogarithmic communication cost and a limited

computational effort on the server side. The proposed protocol provides search pattern and access pattern privacy, for both

exact string search, and character-pattern search with wildcards. Its extension to a multi-user setting shows significant savings

in terms of outsourced storage w.r.t. a baseline solution where the whole dataset is replicated. The performance figures of an

optimized implementation of our protocol, searching into a remotely stored genomic dataset, validate the practicality of the

approach exhibiting a data transfer of less than 50 kiB to execute a query over a document of 40 MiB, with execution times on

client and server in the range of a few seconds and a few minutes, respectively.

CCS Concepts: • Security and privacy→ Privacy-preserving protocols; Management and querying of encrypted
data; Security protocols.

Additional Key Words and Phrases: Secure substring search, Cryptography, Homomorphic encryption, Privacy-preserving

protocol

ACM Reference Format:
Nicholas Mainardi, Alessandro Barenghi, and Gerardo Pelosi. 2020. Privacy-aware character pattern matching over outsourced

encrypted data. Digit. Threat. Res. Pract. 00, 0, Article 000 ( 2020), 39 pages. https://doi.org/10.1145/xxxyyyx.yyyxxxy

1 INTRODUCTION
The significant improvements in reliability and total cost of ownership provided by remote data management

services have proven on field to be beneficial to a large variety of enterprises. In this context, a company relies

on cloud based services to store a significant amount of its own data in an infrastructure located in a third party

data centre, beyond the means of its direct control. While this has significant benefits in terms of the reduction

∗
This article extends the previous work by the authors appeared under the title “Privacy Preserving Substring Search Protocol with

Polylogarithmic Communication Cost,” in Proceedings of the 35th Annual Computer Security Applications Conference, ACSAC 2019, San

Juan, PR, USA, December 09-13, 2019 [27].

Authors’ addresses: Nicholas Mainardi, Politecnico di Milano – DEIB, Piazza Leonardo da Vinci, 32, Milano, Italy, 20133, nicholas.mainardi@

polimi.it; Alessandro Barenghi, Politecnico di Milano – DEIB, Piazza Leonardo da Vinci, 32, Milano, Italy, 20133, alessandro.barenghi@polimi.it;

Gerardo Pelosi, Politecnico di Milano – DEIB, Piazza Leonardo da Vinci, 32, Milano, Italy, 20133, gerardo.pelosi@polimi.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

© 2020 Association for Computing Machinery.

2576-5337/2020/0-ART000 $15.00

https://doi.org/10.1145/xxxyyyx.yyyxxxy

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.

https://doi.org/10.1145/xxxyyyx.yyyxxxy
https://doi.org/10.1145/xxxyyyx.yyyxxxy


000:2 • N. Mainardi, A. Barenghi, G. Pelosi

of the efforts to be made for infrastructural maintenance, it comes with confidentiality (secrecy) and privacy

concerns acting as stopgaps to the adoption of cloud based storage solutions.

In this paper, we consider the popular cloud computing model composed by three entities: the data owner, the

cloud server and the users authorized to access the remotely stored data. The data owner stores the data on the

cloud server and authorizes the users to issue specific queries on the outsourced data. To protect the data, the

data owner encrypts the data before outsourcing them and shares the decryption keys with the authorized users

only. However, data encryption is a major hindrance to perform queries over the data, such as searching for a

given pattern, with practical performance. Therefore, there is a pressing need for effective solutions enabling a

set of querying functionalities on encrypted data, possibly by multiple users, preserving the confidentiality of the

searched information even against the service (storage) provider itself.

Problem Statement. A data owner outsources a set of documents D = {D1, . . . ,Dz }, z ≥ 1, where each

document is a sequence of symbols (string) over an alphabet Σwith length len(Di ), encryptedwith a cryptographic

primitive of choice. In addition, the data owner builds an indexing data structure to enable the search for any

substring q ∈ Σ∗, len(q)=m ≥1, over D. A query for a substring q will yield, for each document Di , 1 ≤ i ≤ z, the
set of positions, Si , where an occurrence of q appears. Along with the collection of documents D, the data owner
stores on the remote storage a privacy-preserving representation of the aforementioned indexing data structure

allowing authorized clients to use the substring search functionality with the cooperation of the service provider.

The main challenge in this scenario is reducing the information learnt by an adversary (including the service

provider) to the knowledge of the size of the outsourced document collection, the size of the substring, the one of

the indexing data structure and the total number of occurrences matching the query at hand. We remark that the

private retrieval of the matching documents from the remote storage is out of scope in the problem addressed

by this paper, as this functionality can be achieved by hinging upon existing cryptographic primitives such as

Oblivious RAMs (ORAMs) [36] or Private Information Retrieval (PIR) protocols [25].

Adversary and Security Model. In a real-world deployment of a privacy-preserving substring search solution,

the notion of semi-honest adversary fits well entities that trustworthy follows the protocol specification, although

being curious about any other additional information that may be inferred with a polynomial computation

effort about the confidential data as well as the access patterns or the search patterns on the remote data storage.

Informally, a search pattern refers to the understanding of how similar distinct queries are (e.g., if they share a

common prefix or only some non consecutive symbols), while access pattern refers to the understanding of the

positions of occurrences of the queried substring in D.

Prior Art Approaches. The seminal work on searching over data in an encrypted state [35] (a.k.a. searchable
encryption schemes), as well as many of the subsequent improvements in terms of computational and communica-

tion resources [3, 9], relies on pre-registering searchable keywords, without supporting free form searching over

the encrypted data. Such a limitation is overcome by substring searchable encryption schemes [6, 11, 18, 23, 38].

These schemes exhibit computation/communication complexities linear or quadratic in the length of the searched

substring (hence independent from the size of the document collection), with different server side storage savings

and assumptions on the adversary capabilities. Notably, the protocol described in [11] is the only one that enables

querying on patterns including the wildcard symbol ?, which acts as a placeholder in matching an arbitrary single

character. Furthermore, since the design of this protocol stems from an existing dynamic searchable encryption
scheme, it is the only substring searchable encryption scheme that allows to efficiently add new documents to

the collection without re-encrypting significant portions of the search index employed for queries. While these

solutions cope with the problem of substring search, the works in [6, 11, 23, 38] do not provide protection of

search and access pattern, while the information leakage shown in [18] is not explicitly framed as a search or

access pattern one. The importance of protecting both the search and access pattern is demonstrated by [5, 33],

where the authors describe the recovery of either a significant portion of the documents in the collection D or

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:3

the content of the queried substrings by combining search and access pattern leakages with public information

related to the application domain itself.

Contributions. Substring searchable encryption schemes [6, 18, 23, 38] employ symmetric-key or order-

preserving cryptographic primitives, obtaining practical performance figures in terms of required bandwidth,

computational power, and storage demands on both clients and servers. However, they do not take into account

the information leakage coming from the observation of both search and access patterns. The higher privacy

guarantees resulting from the inclusion of such leakages in the security model comes along with the usage of

cryptographic primitives with higher computational complexity. We refer to substring search schemes preserving

search or access pattern confidentiality as privacy-preserving substring search (PPSS) protocols.

In the following, we describe the first multi-user PPSS protocol secure against semi-honest adversaries

preserving both search and access pattern confidentiality and enabling queries for patterns containing wildcard

characters. We combine the working principles of the Burrows Wheeler Transform (BWT) [4] (as a method to

perform a substring search) with a single server private information retrieval (PIR) protocol; specifically, we

choose the PIR proposed by Lipmaa in [25], which is based on the generalized Pailler homomorphic encryption

scheme proposed in [10], because of its limited communication cost. This design leads to a PPSS protocol with

O(m+oq) communication rounds and anO((m+oq) log
2 n) communication cost between client and service provider,

where oq denotes the number of occurrences of the queried string q (m=len(q)) over the document collection

D = {D1, . . . ,Dz }, z ≥ 1, and n=
∑z

i=1 len(Di ). Our PPSS protocol exhibits an O((m+oq) log
4 n) computational

cost and requires O(logn) memory on the client side, while the computational and storage demands on the

service provider side amount to O((m+oq)n) and O(n), respectively. An enhanced version of the same protocol

allows to retrieve all oq occurrences of a queried string q in a single communication round instead of oq ones,

making the computational cost at server side also independent from oq . This version improves all the figures

of merit exhibiting an O(m log
2(n)+oq log(n)) communication cost, an O(m log

4(n)+oq log
4( noq
)) computational

cost at client side and an O(m·n) computational cost at server side. In a multi-user scenario, our PPSS protocol

allows distinct and simultaneous queries on the same document collection, run by multiple clients without

any interaction with the data owner and among themselves. Our multi-user approach avoids to replicate the

outsourced document collection for each authorized client, limiting the additional memory required by each

query toO(log2 n) cells. Finally, to make our PPSS protocol resilient against accidental or misconfiguration errors,

we complement its features with an efficient mechanism that allows the client to verify the correctness of the

remotely accessed data.

2 RELATED WORK
We now briefly revise existing PPSS protocols, comparing their functionalities and performance with our solution

and its enhanced version. An overview of such comparison is reported in Tab. 1. In [40], the authors describe a

PPSS protocol to establish if a given substring is present in the outsourced document collection with an O(n)
communication cost and an impracticalO(n) amount of cryptographic pairing computations required at the client

side for each query. Shimizu et. al. in [34] described how to use the Burrows Wheeler Transform (BWT) [4]

and Pailler’s additive homomorphic encryption (AHE) scheme [31] to effectively retrieve the occurrences of

a substring. The main drawback of the scheme lies in the significant communication cost: each query needs

to send O((m+oq)
√
n) ciphertexts from client to server. Such a cost was reduced by Ishimaki et. al. [21] to

O((m+oq) log(n)), at the price of employing a fully homomorphic encryption (FHE) scheme [16], making their

solution unpractical. Indeed, FHE schemes generally require ciphertexts bigger than the ones exhibited by Pailler

AHE scheme, introducing a significant constant factor in the communication cost. Moreover, the computational

cost for the server is O((m+oq)n log(n)), which also hides a large constant overhead (about 10
6
) required to

compute on FHE ciphertexts.

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:4 • N. Mainardi, A. Barenghi, G. Pelosi

Table 1. Comparison of existing privacy-preserving substring search protocols with our protocol. In the table, n denotes the
size of the document collection,m the length of the queried substring q, and oq the number of occurrences of q found.
† the asymptotic cost in [21] hides a large constant factor C , e.g., C≥16 × 106, for providing 80-bit security parameters
‡ Improved version of our protocol featuring batching retrieval of occurrences
§ Search and Access pattern privacy

PPSS Communication Server S. & A.§ Data Owner Multi Wildcard AdversaryProtocol Cost Cost Privacy Off-line User Queries

[40] O (n) O (m · n) ✓ ✓ × × Semi-honest

[34] O ((m + oq )
√
n) O ((m + oq )n) ✓ ✓ × × Semi-honest

[21] O (C(m + oq ) log(n))† O (C(m + oq )n logn)† ✓ ✓ × × Semi-honest

[12] O ((m + oq ) log(n)) Ω(( nm + oq ) log(n)) S.✓A.× × ✓ × Malicious

[32] O (m + oq ) O (m ·n) S.✓A.× ✓ ✓ × Semi-honest

[30] Ω(m log
5(n)+oq log

2(n)) Ω(m log
5(n)+oq log

2(n)) ✓ ✓ × × Semi-honest

[28] O (m + oq ) O ((m + oq ) log3(n)) ✓ ✓ × × Malicious

[24] O (m + oq ) O (n) S.✓A.× × ✓ ✓ Semi-honest

[41] O (m + oq ) O (n) S.✓A.× ✓ × ✓ Semi-honest

Ours O ((m + oq ) log2(n)) O (m + oq )n ✓ ✓ ✓ ✓ Semi-honest

Ours+‡ O (m log
2(n)+oq log(n)) O (m ·n) ✓ ✓ ✓ ✓ Semi-honest

A multi-user protocol, preserving only the search pattern confidentiality and with communication cost linear

in the size of the searched substring is described in [12]. The main drawbacks of this solution are the need for

the client to interact with both the data owner and the server to perform a query, and the constraint that only

substrings of a fixed length, which must be decided when the privacy preserving indexing data structure to be

outsourced is built, can be queried, in turn limiting the impact of the solution. This protocol has been recently

improved in [32], removing the interaction between the client and the data owner during queries. Remarkably,

this is the first substring search protocol that allows multiple users to perform queries over data coming from

multiple data owners with an access control mechanism that allows to restrict, for each document, the users

authorized to perform queries. Nonetheless, the protocol is still affected by a lack of access pattern privacy;

furthermore, the client must perform a distinct query for each document the client is interested in.

The suffix-array based solutions proposed by Moataz et. al. in [30] guarantee the confidentiality of the content

of both the substring and the outsourced data, as well as the privacy of the access pattern and the search pattern

observed by the server. The access pattern to the outsourced indexing data structures is concealed by employing

an ORAM data structure [36] – which is specifically designed to obliviously access a remote data storage without

leaking search and access patterns. The asymptotic complexities of the protocol showed in [30] mainly depends

on the size of each document being negligible w.r.t. the total number of them (denoted as z). Indeed, it exhibits
O(m log

3(z)) communication and computation complexities, assuming that the size of each document isO(log2(z)).
If the size of each document is not negligible w.r.t. their total number, the computational and communication

cost of the solution increase proportionally to the size n of the document collection, by (at least) a factor log
2(n).

Each of the oq occurrences can be retrieved with oq accesses to the ORAM, yielding an additional O(oq log
2(n))

communication cost.

ObSQRE [28] is the first PPSS protocol with optimal communication cost concealing both the search and

the access patterns. This goal is achieved by relying on Intel SGX technology [8], which allows to execute an

application on an untrusted machine while guaranteeing the confidentiality and the integrity of the application

code and data. Nonetheless, since this technology is based on trusted hardware modules provided by Intel, ObSQRE

can only be deployed on servers equippedwith Intel CPUswhere such hardware is available. Furthermore, ObSQRE

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:5

String Index

a1 l1 f1 a2 l2 f2 a3 $ 1

l1 f1 a2 l2 f2 a3 $ a1 2

f1 a2 l2 f2 a3 $ a1 l1 3

a2 l2 f2 a3 $ a1 l1 f1 4

l2 f2 a3 $ a1 l1 f1 a2 5

f2 a3 $ a1 l1 f1 a2 l2 6

a3 $ a1 l1 f1 a2 l2 f2 7

$ a1 l1 f1 a2 l2 f2 a3 8

F String L SA

$ a1 l1 f1 a2 l2 f2 a3 8

a3 $ a1 l1 f1 a2 l2 f2 7

a2 l2 f2 a3 $ a1 l1 f1 4

a1 l1 f1 a2 l2 f2 a3 $ 1

f2 a3 $ a1 l1 f1 a2 l2 6

f1 a2 l2 f2 a3 $ a1 l1 3

l2 f2 a3 $ a1 l1 f1 a2 5

l1 f1 a2 l2 f2 a3 $ a1 2

sorting

Fig. 1. Burrows Wheeler Transform L and Suffix Array SA of the string alfalfa

lacks two important features provided by our PPSS protocol: indeed, it supports neither simultaneous queries

from multiple users, nor queries for patterns containing wildcard characters.

A multi-user PPSS protocol allowing queries with wildcard characters was first proposed in [24]. This solution

allows users to identify the documents in the collection that belong to the language specified by a Deterministic

Finite Automaton (DFA). Specifically, authorized users can independently send an obfuscated version of the

DFA to the server, which computes the set of matched documents, i.e., the ones accepted by the DFA. Therefore,

this PPSS protocol enables the matching of any regular pattern in the document collection, making it more

expressive than our solution. Nonetheless, although the structure of the DFA is concealed to the server in such

a way to prevent search pattern leakage, the server learns which documents are matched, hereby leaking the

access pattern. Furthermore, a relevant limitation of this protocol is the need for each user to interact with a

trusted authority to build a properly obfuscated search query (relying on a master secret key known only to the

trusted authority). The said interaction between a user and the trusted authority has been removed in a further

modification of this protocol proposed in [41], which however requires the data owner to encrypt the documents

employing a pairing-based cryptosystem (specifically designed by the authors) with a per-user public key, hence

requiring a distinct per-user encrypted copy of the outsourced document collection. Because of this limitation,

we do not classify in Tab. 1 this solution as a multi-user PPSS protocol.

3 PRELIMINARIES
In the following, we describe the basic algorithms and cryptographic primitives employed in this work, detailing

their features and pointing out the properties needed to define our privacy-preserving substring search (PPSS)

protocol.

3.1 Substring Search with BWT
The Burrows-Wheeler Transform (BWT) [4] was designed to compute a transformation of a given text (string) s
to make it more compressible by run-length encoding methods. It computes an invertible permutation of the

string at hand, L = BWT(s), that can be efficiently compressed if letters of the alphabet Σ have repetitions in the

string s , regardless of their position. The BWT computation has a time complexity that is linear in the string

length n.
Besides its usefulness as a preprocessing for compression, the BWT enables a very efficient substring search

algorithm when combined with the so-called suffix array, i.e., the array of starting positions of all sorted suffixes

of a string [13]. The substring search algorithm has a linear time complexity in the length of the substring to

be searched for, and it requires only a limited storage overhead. Consider a string s with length n defined over

an alphabet Σ ∪ {$}, where the end-of-string delimiter $ precedes any character in Σ for any order relation of

choice (e.g., the alphabetical one). We denote with an increasing numerical subscript the occurrences of the

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:6 • N. Mainardi, A. Barenghi, G. Pelosi

same character in s (e.g., a1,a2 will denote the first and second occurrence of a in s) and we define as index of a

substring in s the position of its leading character in the original string, counting from 1 onwards.

As shown in Fig. 1, taking as an example s = alfalfa$, first the BWT computation mandates to build a list of

n + 1 strings obtained performing a cyclic shift of s by all the amounts in {0, 1, . . . ,n}. Each of these n + 1 strings
contain the suffixes of s , represented by the portion of the shifted string preceding the string delimiter $, whose

indexes are also computed and stored. The list of n + 1 shifted strings is then sorted lexicographically, and the

BWT of s , L = BWT(s), is derived concatenating the trailing characters of each string in the sorted list. The suffix

array SA associated to L is built by storing the indexes of the cyclic shifts of s in the sequence defined by the

sorting step.

Given L and SA, the inverse BWT transform allows to reconstruct the original string s = BWT−1(L) and also

to lookup for the occurrences of a given substring. Note that the string F , i.e., the concatenation of the leading

characters of the sorted list of suffixes employed to compute the BWT (in blue in Fig. 1), can also be obtained

concatenating s[SA[j]] for all 1≤j≤n+1, i.e., F [j] = s[SA[j]]. We outline some useful properties of the strings L
and F in the following statement:

Theorem 3.1. Consider a string s , with length n + 1, over the alphabet Σ∪ {$} and $ as trailing character. Denote
the BWT of s as L = BWT(s), its suffix array as SA and as F the string F [j] = s[SA[j]] with 1≤j≤n + 1. Denoting the
position of a character c ∈ Σ in F and L as posF (c) and posL(c), respectively, and by succs (c) the character subsequent
to c in the string s , the following properties hold:
(1) Characters in the same position in L and F are consecutive in the original string s : ∀c ∈ s(posL(c) =

posF (succs (c))).
(2) All the occurrences of the same character appear in the same order in both F and L, i.e., for each pair of

occurrences ⟨c1, c2⟩ of the same character: posF (c1)<posF (c2) ⇔ posL(c1)<posL(c2).
(3) Consider two occurrences of the same character c in L, denoted by c1, c2, where posL(c1) < posL(c2). If no

occurrence c3 of c such that posL(c1) < posL(c3) < posL(c2) exists, then posF (c2) = posF (c1) + 1.

Proof. (1) follows directly from BWT construction, as the characters F [i], L[i], 1≤i≤n+1, are consecutive
characters in one of the cyclic shifts of the original string. Concerning (2), we observe that since F is constructed

by concatenating the first characters of the sorted cyclic shifts of s , then posF (c1) < posF (c2) ⇔ posF (succs (c1))
< posF (succs (c2)). Due to (1), posL(c) = posF (succs (c)), thus posF (succs (c1)) < posF (succs (c2)) ⇔ posL(c1) <
posL(c2), which proves (2). Finally (3) is proven by contradiction. Assume there is no c3 such that posL(c1) <
posL(c3) < posL(c2)withposF (c2)−posF (c1) , 1. As F contains a sorted sequence of characters in s , havingposF (c2)
> posF (c1)+1 implies the existence of a further occurrence, c3, between the two, posF (c2) > posF (c3) > posF (c1).
Property (2) implies posL(c2) > posL(c3) > posL(c1), contradicting the hypothesis. □

Relying on the previous theorem, Alg. 1 computes the positions of the occurrences of a substring q with length

m in a string s with n characters, taking as input three data structures and the substring to be searched.

The first data structure replaces L, the BWT of s , with a (|Σ| + 1) × (n + 1) integer matrix M indexed by a

character c in Σ ∪ {$} and an integer i , storing in each cellM[c][i] the number of occurrences of c in the first i
characters of L, i.e., the substring L[1, . . . , i]. The second data structure is a dictionary Rank of size |Σ|+1, with
pairs ⟨c, l⟩, where c∈Σ, and l , 0≤l≤n+1, is the number of characters in s alphabetically smaller than c . The third
one is the suffix array SA of s .
The substring search procedure looks for the characters in q starting from the last one, i.e., q[m], moving

backwards towards q[1]. In the algorithm, a run of equal characters in F is identified by α+1 and β , which denote

the positions of the first and the last of them in F , respectively. Starting from q[m], and the corresponding values

for α and β (lines 1–2), the algorithm looks for all the occurrences of q[m−1] followed by q[m] in s (lines 4–6)
to update α+1 and β with the first and last positions in F of the leading character of the substring q[m−1,m].

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:7

Algorithm 1: Substring search
Input: M , matrix representation of the BWT L of a given n-character string s ; M [c][i] stores the number of occurrences of the

character c ∈Σ in the string L[1], . . . , L[i], 1≤i≤n.
Rank, dictionary of size |Σ |+1, of pairs⟨c , l ⟩, with c ∈Σ, l=Rank(c), 0≤l ≤n+1 number of chars in s smaller than c .
SA, suffix array with length n+1 of the string s ;
q, a substring with length 1 ≤ m ≤ n.

Output: Rq , set of positions in s with the leading character of every repetition of q.
1 c ← q[m]
2 α ← Rank(c), β ← α +M [c][n + 1]
3 for i ←m − 1 downto 1 do
4 c ← q[i], r ← Rank(c)
5 α ← r +M [c][α ]
6 β ← r +M [c][β ]
7 Rq ← ∅
8 for i ← α + 1 to β do
9 Rq ← Rq ∪ {SA[i]}

10 return Rq

In particular, all the repetitions of q[m−1] among the predecessors of q[m] in s = BWT−1(L) coincide with the

repetitions of q[m−1] in L[α + 1, . . . , β] (property (1) in Thm. 3.1). Denote the first and last repetition of q[m−1]
in L[α + 1, . . . , β] as q[m − 1]first and q[m − 1]last. Note that, thanks to property (3) in Thm. 3.1, the repetitions

of q[m−1] in the unsorted string L[α + 1, . . . , β] correspond to the subsequence of consecutive characters in F
with positions between posF (q[m−1]first) and posF (q[m−1]last), which represent the updated values for α+1
and β , respectively.
The value posF (q[m−1]first) can be obtained adding to the position of the leading character in F (i.e., 1) the

number r = Rank(q[m−1]) of characters in s smaller than q[m−1] (i.e., the number of characters preceding any

repetition of q[m−1] in F ), and the number of repetitions of q[m−1] with smaller positions in F than q[m− 1]first.
As by property (2) in Thm. 3.1, the latter quantity equalsM[q[m−1]][α] thus, line 5 in Alg. 1 correctly updates α .

Analogously, posF (q[m−1]last) can be obtained by adding to the position of the leading character in F (i.e., 1)

the number r = Rank(q[m−1]) of characters in s smaller than q[m−1] (i.e., the number of characters preceding any

repetition of q[m−1] in F ), and the number of repetitions of q[m−1]with smaller positions over F than q[m−1]last.
By property (2) in Thm. 3.1, the latter quantity equals M[q[m−1]][β] − 1 as the count given by M[q[m−1]][β]
includes also q[m−1]last. Thus, Alg. 1 at line 6 correctly updates β .
Note that, in case q[m−1] is not in L[α + 1, . . . , β], then M[q[m − 1]][α] = M[q[m − 1]][β], thus α and β are

correctly updated to the same value.

At the end of the first iteration of the loop, β−α amounts to the number of repetitions of the substringq[m−1,m]
in s . In the next iteration the values α+1, β are updated with the positions in F of the first and last repetition

of the leading character of q[m−2, . . . ,m]. The algorithm proceeds in such a way to compute during the last

iteration the values of α+1 and β referring to the first and last positions in F of the leading character of the

whole substring q[1, . . . ,m] thus obtaining the number of occurrences of q, denoted as oq , i.e., oq=β−α . Then,
exploiting the fact that F [i]=s[SA[i]], 1≤i≤n + 1, the set Rq of integers in SA[α+1, . . . , β] includes the position of

the leading character of each repetition of q in s . Algorithm 1 (lines 7–9) computes Rq following the mentioned

observation.

In Alg. 1, the time and space complexities to find the number of repetitions of a substring q with lengthm
amounts, respectively, to 4m−1 memory accesses, i.e.,O(m), andO(|Σ|n). The computation of the set of positions

of the leading characters of repetitions of q in s increases the time complexity up to O(m + oq).

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:8 • N. Mainardi, A. Barenghi, G. Pelosi

Substring Search over a Collection of Documents. The problem of finding the repetitions of a substring q
with lengthm over a set of z ≥ 1 documentsD = {D1, . . . ,Dz } can be solved considering a string s obtained as the
ordered concatenation of all documents, each terminated by an end-of-string character, i.e.: s = D1$D2$ . . .Dz$;

each character of s is coupled with a pair ⟨pos,o f f ⟩, where pos is the starting position in s of the document

where the character at hand is found, and off is the offset of the said character in the document. It is easy to

adapt Alg. 1 to this multi-document scenario. Specifically, Alg. 1 takes as input a matrix M derived from the

BWT of s , the dictionary Rank over the alphabet Σ and an augmented suffix array SA storing for each cell SA[j],
with 1≤j≤n+1 and n = len(s), a pair of values ⟨pos, off⟩. Each occurrence of q is thus identified by the pair

⟨pos, off⟩ relative to the leading character of the occurrence at hand; from such pair, it is trivial to both compute

the position in s of any occurrence of q and to retrieve from the string s the entire document where an occurrence

is found. If the application scenario requires also to obtain an identifier of the document where an occurrence is

located, then the augmented suffix array may also store this id for each of its entries.

Algorithm 1 correctly computes the solution by recognizing all the repetitions of q in D1, D2, . . . ,Dz separately.

Indeed, the interleaving of the end-of-string delimiters with the sequence of documents during the construction

of s guarantees that no substring matching across two adjacent documents is considered. Thus, the application of

Alg. 1 with a properly prepared input returns a result equivalent to running it separately over each document.

3.2 Cryptographic Building Blocks
Definition 3.2 (Additive Homomorphic Encryption). An additive homomorphic encryption (AHE) scheme is a

tuple of four polynomial time algorithms (KeyGen, E, D, Add):

• (pk, sk, evk) ← KeyGen(1λ) is a probabilistic algorithm which, given the security parameter λ, generates a
public key pk , a secret key sk and a public evaluation key evk used to perform the homomorphic operation.

• c ← E(pk,m), denoted also as Epk (c), is a probabilistic algorithm which, given the public key pk and a

plaintext valuem ∈ M, whereM denotes the plaintext space of the scheme, encrypts the message to a

ciphertext c ∈ C, where C denotes the ciphertext space.

• m ← D(sk, c), denoted also as Dsk (c), is a deterministic algorithm which, given the secret key sk and a

ciphertext c ∈ C, recovers the plaintext valuem ∈ M.

• cadd ← Add(evk, c1, c2), the homomorphic-addition primitive, is a deterministic algorithm which, given

the evaluation key evk and two ciphertexts c1, c2 ∈ C, computes the homomorphic addition of the two

ciphertexts, which is a ciphertext cadd ∈ C.

For every key (pk, sk, evk) generated by the KeyGen algorithm, the encryption, decryption and homomorphic

addition algorithms satisfy the following correctness properties.

Decryption Correctness: ∀m ∈ M(Dsk (Epk (m)) =m)

Addition Correctness: ∀m1,m2∈M:

Dsk (Add(evk, Epk (m1), Epk (m2)))=m1+m2, wherem1+m2 represents the addition in the plaintext spaceM.

An AHE scheme allows to perform another operation HybridMul, referred to as hybrid homomorphic multiplication,
defined as follows: given a generic ciphertext c = Epk (m) ∈ C and an integer h ≥ 1, HybridMul computes a

ciphertext chmul that is an encryption ofm · h. Formally:

∀m ∈ M,h ≥ 1(Dsk (HybridMul(evk,h, Epk (m))) =m · h)

This operation can be efficiently implemented via a double-and-add strategy which employs O(logh) homomor-

phic additions.

Definition 3.3 (Flexible Length Additive Homomorphic Encryption). An AHE scheme is defined as a flexible

length additive homomorphic encryption (FLAHE) scheme if it is augmented with an additional parameter l ≥ 1,

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:9

called length, which specializes the definition of the plaintext and ciphertext spaces, as well as of the encryption,

decryption and homomorphic addition operations, such that:

∀l1, l2 ∈ N(l1 < l2 ⇒ C
l1 ⊂ Ml2 )

where the superscript l1 (resp. l2) is employed to specify the plaintext and ciphertext spaces for length l1 (resp. l2).
Therefore, the expression Cl1 ⊂ Ml2

indicate that ciphertexts in Cl1 are valid plaintexts for ciphertexts in Cl2

(i.e., a ciphertext in Cl1 is a valid output of the decryption algorithm fed with an element of Cl2 ).

Paillier FLAHE Scheme. Proposed in 1999 [31], it is a public key AHE scheme based on theComposite Residuosity
Class Problem, which is polynomially reducible to the Integer Factoring Problem. The plaintext space of this scheme

isM = ZN , with N computed as the product of two large primes, while the ciphertext space is C = Z∗N 2
⊂ ZN 2 ,

i.e., the subset of all and only elements of ZN 2 with a multiplicative inverse modulo N 2
. The key generation

algorithm computes the public pk and private key sk , with the public evaluation key evk = pk . The Paillier
scheme is semantically secure, which intuitively means that it is computationally unfeasible to determine if two

ciphertexts encrypt the same plaintext or not. Given the ciphertexts c1, c2 ∈ ZN , the homomorphic addition is

defined as: ∀m1,m2 ∈ ZN (Dsk (Epk (m1) · Epk (m2) mod N 2) =m1+m2 mod N ).

Therefore, the result of an hybrid homomorphic multiplication HybridMul is obtained as an exponentiation of a

ciphertext c to an integer. It can also be conceived as the encryption of the product of two plaintexts:

∀m1,m2 ∈ ZN (Dsk (Epk (m1)
m2

mod N 2) =m1 ·m2 mod N )

By combining the homomorphic addition and the HybridMul operation, the Paillier scheme allows to perform a

dot product between a cell-wise encrypted array, denoted as ⟨A⟩, and an unencrypted one B, both with n ≥ 1

elements; this operation, referred to as hybrid dot product, is computed as follows:

Dsk

(
n∏
i=1

(⟨A⟩[i])B[i] mod N 2

)
=

n∑
i=1

A[i] · B[i] mod N (1)

An FLAHE variant is described in [10] where the plaintext and ciphertext spaces are specialized on the size of

their elements as follows:Ml = ZN l , and Cl = Z∗N l+1 .

Given two lengths l1, l2, with l1 < l2, the hybrid homomorphic multiplication HybridMul between a ciphertext

in Z∗
N l

2
+1
and one in Z∗

N l
1
+1
equals the encryption of the product between the plaintext value in ZN l

2
(enciphered

by the first operand) and the latter ciphertext (being Z∗
N l

1
+1
⊂ ZN l

2
). Indeed, ∀m1 ∈ ZN l

1
,m2 ∈ ZN l

2
:

Dl2sk

(
El2pk (m2)

E
l
1

pk (m1)
mod N l2+1

)
=m2 · E

l1
pk (m1) mod N l2

where the superscript l1 (resp. l2) denotes that the encryption and decryption operations are performed for

plaintext and ciphertext spacesMl1
and Cl1 (resp.Ml2

and Cl2 ). This property of the HybridMul operation in

the Paillier FLAHE scheme is extremely useful, as it allows to perform the homomorphic dot product between an

array ⟨A⟩l2 encrypted cell-wise with length l2, and an array ⟨B⟩l1 encrypted cell-wise with length l1:

Dl2sk

(
n∏
i=1

(⟨A⟩l2 [i])
⟨B ⟩l

1
[i]

mod N l2+1

)
=

n∑
i=1

A[i] · ⟨B⟩l1 [i] mod N l2
(2)

This homomorphic operation is at core of the Private Information Retrieval (PIR) protocol introduced by Lipmaa

in [25], which, in turn, is an important building block of our PPSS protocol.

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:10 • N. Mainardi, A. Barenghi, G. Pelosi

Algorithm 2: PIR-Trapdoor in Lipmaa’s PIR

Function PIR-Trapdoor(h, b):
Input: h, 0≤h<n: Index of the element to be retrieved

from remotely stored array A with n entries

b≥2: Integer employed as a radix to represent h
Output: ⟨h ⟩: Trapdoor to privately retrieve A[h]
Data: pk : Public key of a Paillier FLAHE keypair

1 begin
2 t ← ⌈logb (n)⌉
3 {h0, . . . , ht−1 } ← RadixDecompose(h,b)
4 ⟨h ⟩ ← ∅
5 for i ← 0 to t−1 do
6 for x ← 0 tob−1 do
7 if x = hi then
8 hdigiti [x ] ← Ei+1pk (1)

9 else
10 hdigiti [x ] ← Ei+1pk (0)

11 ⟨h ⟩ ← ⟨h ⟩ ∪ hdigiti
12 return ⟨h ⟩

Algorithm 3: PIR-Search in Lipmaa’s PIR

Function PIR-Search(A, b , ⟨h ⟩):
Input: A: remotely stored array with n entries

b : Radix employed to construct the trapdoor ⟨h ⟩ in the

PIR-Trapdoor procedure
⟨h ⟩ = {hdigit

0
, . . . , hdigitt−1 }, t ← ⌈logb (n)⌉: Trapdoor

to privately retrieve A[h]
Output: ⟨Aht−1 ⟩: t -layered encryption of the requested entry A[h]
Data: N : Public modulus employed for homomorphic operations in

Paillier FLAHE scheme

1 begin
2 t ← ⌈logb (n)⌉
3 for j = 0 to ⌈nb ⌉−1 do
4 ⟨Ah0 ⟩[j] ←

∏b−1
z=0 hdigit0[z]

A[j ·b+z]
mod N 2

5 for i = 1 to t−1 do
6 for j = 0 to ⌈ n

bi+1
⌉−1 do

7 ⟨Ahi ⟩[j]←
∏b−1
z=0 hdigiti [z]

⟨Ahi−1 ⟩[j ·b+z] mod N i+2

8 return ⟨Aht−1 ⟩

3.3 Lipmaa’s PIR Protocol
Given an array A with n elements, each encoded with ω bits, stored on a remote server, a PIR protocol allows a

client to retrieve the element in the h-th cell, 0≤h≤n−1, with the server being able to determine which element

was selected with probability at most
1

n .

A draft description of the PIR in [25] assumes that both the client and the server read the positions of the cells

of the array in positional notation with radix b ≥ 2, i.e., an index h is represented by the sequence of t=⌈logb (n)⌉
digits {h0, . . . ,ht−1}, with each hi ∈ {0, . . . ,b−1}, such that h=

∑t−1
i=0 hib

i
. The request of the array element at

position h is performed in t communication rounds. First, the client asks the server to select all the cells having

the least significant digit of the b-radix expansion of their positions equal to h0 to compose a new array Ah0
concatenating the selected cells in increasing order of their original position, i.e., Ah0 [j]=A[j ·b +h0], 0≤j≤

⌈n
b

⌉
−1.

In the next round, the client asks to select the cells inAh0 having the least significant digit of the b-radix expansion
of their positions equal to h1, constructing an array Ah1 as Ah1 [j]=Ah0 [j·b+h1] = A[j·b2+h1·b+h0], 0≤j≤

⌈ n
b2

⌉
−1.

The next rounds continue employing the subsequent digits of h with the same logic until, in the last round (i.e.,

the t-th one), a single cell (the h-th one) is identified by the server.

In the proper, fully private, PIR protocol [25], the client initially generates a public/private Paillier FLAHE keypair

(pk , sk) with a public modulus N≥2ω , and shares pk with the server. The protocol is defined by three procedures:

PIR-Trapdoor and PIR-Retrieve, executed at client side, and PIR-Search, executed at server side.

PIR-Trapdoor procedure. The PIR-Trapdoor procedure, reported in Alg. 2, takes as input an integer b ≥ 2

and the remote array index h referring to the item that must be retrieved. The output value is an “obfuscated”

version of h, denoted as ⟨h⟩, also referred to as trapdoor. The first step of the trapdoor computation considers

the value h as the sequence of t=⌈logb (n)⌉ digits in b-radix positional representation (lines 2–3). Then, in the

subsequent loop (lines 4–12), the algorithm computes the trapdoor ⟨h⟩ as the set of t arrays with b ciphertexts

{hdigit
0
, . . . , hdigitt−1}, each related to a digit hi , 0≤i≤t−1, of h. Specifically, the i-th array has b ciphertexts

of length l=i+1; all the b entries of such array encrypts the plaintext value 0 ∈ ZN l (line 10), except for the entry

hdigiti [hi ], which encrypts the plaintext value 1 ∈ ZN l (line 8). Since each of the t arrays has b elements of the

ring Z∗
N l+1 , then the size of the trapdoor ⟨h⟩ amounts to

∑t−1
i=0 b(i+2) log(N ) = Θ(bt2 log(N )) = Θ(b log2b (n) log(N ))

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:11

Algorithm 4: PIR-Retrieve procedure in Lipmaa’s PIR protocol

Function PIR-Retrieve(b , ctx):
Input: b : Radix employed to construct the trapdoor ⟨h ⟩ in the PIR-Trapdoor procedure

ctx: ciphertext computed by the PIR-Search procedure

Output: The element A[h] privately retrieved from the remotely stored array A with n entries

Data: sk : Secret key of Paillier FLAHE keypair

1 begin
2 for i ← ⌈logb (n)⌉ to 1 do
3 ctx← Disk (ctx)

4 return ctx

bits. The computational cost of the PIR-Trapdoor procedure amounts to O(b log3(N ) log4b (n)) bit operations,
assuming the use of modular multiplication quadratic in the size of the operands.

PIR-Search procedure. The PIR-Search procedure, run at server side and reported in Alg. 3, takes as input

the trapdoor ⟨h⟩, the value of the radix b employed by the client to construct ⟨h⟩ and the array A of items

to be accessed, returning a ciphertext that will be decrypted by the client as the content of A[h]. The search
steps executed at server side follows the t-rounds over the array A reported in the draft description of the PIR

protocol, although in this case these rounds are no longer interactive between the client and the server, that is

they are all performed consecutively at server side without sending back the results of each intermediate round

to the client. In particular, in the first round (lines 3–4), the server computes an encrypted array ⟨Ah0⟩ with

⌈nb ⌉ items, where each entry ⟨Ah0⟩[j], 0≤j≤⌈
n
b ⌉−1, is a ciphertext in Z

∗
N 2

encrypting the item A[j · b + h0] (i.e.,
Dsk (⟨Ah0⟩[j])=A[j·b+h0]). To this end, each item ⟨Ah0⟩[j] is computed as the hybrid dot product, defined in Eq. (1),

between the sub-array A[j·b,. . . ,j ·b+b−1], whose entries are plaintexts in ZN , and the array hdigit
0
found in

the trapdoor ⟨h⟩, whose b ciphertexts are in Z∗N 2
(line 4).

In the subsequent round, which corresponds to the first iteration of loop at lines 5–7 in Alg. 3, the server

constructs an array ⟨Ah1⟩ with ⌈
n
b2
⌉ items, where the ⟨Ah1⟩[j] item, 0≤j≤⌈ nb2

⌉−1, is computed as the homomorphic
dot product, defined in Eq. (2), between the sub-array ⟨Ah0⟩[j · b], . . . , ⟨Ah0⟩[j · b + b − 1], whose entries are

ciphertexts in Z∗N 2
, and the array hdigit

1
found in the trapdoor, whose b ciphertexts are in Z∗N 3

; the result of this

dot-product is a ciphertext in Z∗N 3
which encrypts the item ⟨Ah0⟩[j · b + h1]. As the latter element is a ciphertext

itself, which encrypts the item A[(j ·b+h1) · b + h0)] = A[j ·b2+h1·b+h0] of the array A, then ⟨Ah1⟩[j] is a double-
layered ciphertext, that is the item A[j ·b2+h1·b+h0] could be obtained by decrypting twice the ciphertext ⟨Ah1⟩[j]:
i.e., A[j ·b2+h1·b+h0]=Dsk (D

2

sk (⟨Ah1⟩[j])). In general, in the i-th iteration of the loop at lines 5–7, i ∈ {1, . . . , t−1},
the algorithm computes the array ⟨Ahi ⟩ with ⌈

n
b i+1 ⌉ items, where the ⟨Ahi ⟩[j] item, 0≤j≤⌈ n

b i+1 ⌉−1, is computed as

the homomorphic dot product (line 7) between the sub-array ⟨Ahi−1⟩[j · b], . . . , ⟨Ahi−1⟩[j · b + b − 1], whose entries
are ciphertexts in Z∗N i+1 , and the array hdigiti found in the trapdoor, whose b ciphertexts are in Z∗N i+2 ; the item

⟨Ahi ⟩[j] is an i+1-layered encryption of the entry A[j ·bi+1+
∑i

z=0 b
z ·hz ].

After t−1 iterations, t=⌈logb (n)⌉, the server computes a single t-layered ciphertext ⟨Aht−1⟩ that encrypts with t
layers the itemA[0·bt+

∑t−1
z=0 b

z ·hz ] = A[h], and then it sends ⟨Aht−1⟩ back to the client. The computational cost of

the PIR-Search procedure amounts toO(nb log
3(N )) bit operations to compute a ciphertext with ⌈logb (n)⌉ log(N )

bits.

PIR-Retrieve Procedure. This procedure, run at client side and reported in Alg. 4, employs the secret key sk to

decrypt the ciphertext ⟨Aht−1⟩ computed by the PIR-Search procedure, obtaining the requested element A[h].
Since ⟨Aht−1⟩ is a t-layered ciphertext, then the client must remove all these t encryption layers by decrypting t
timeswith decreasing length, as done in the loop at lines 2–3 of Alg. 4. The computational cost of the PIR-Retrieve
amounts to O(log5b (n) log

2(N )) bit operations to derive the target value A[h]. Finally, the communication cost

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:12 • N. Mainardi, A. Barenghi, G. Pelosi

of the described single-round PIR protocol amounts to O(log(N )b log2b (n)) bits sent from client to server, and to

O(log(N ) logb (n)) bits sent from server to client.

4 PROPOSED PPSS PROTOCOL
Definition 4.1 (Substring Search Functionality). Consider a collection of z≥1 documents D = {D1, . . . ,Dz }, each

with len(Di ), 1≤i≤z, characters of the alphabet Σ, stored on the server, and a query string q∈Σm ,m≥1, provided
by the client. The substring search functionality computes the occurrences of q in each document of D, that is
the set OD,q =

⋃z
i=1ODi ,q , where

ODi ,q={ j | 1≤j≤len(Di )−m+1 ∧ q=Di [j, . . . , j+m−1] }

A privacy-preserving substring search (PPSS) protocol allows the server to provide the functionality specified

in Def. 4.1 without learning the content of the document collection D, the value of the substring q and the

positions in OD,q , as well as guaranteeing search and access pattern privacy. To this end, the protocol needs

to hide all these data by employing privacy-preserving representations. We will denote the privacy-preserving

representation of a datum by enclosing it in square brackets (e.g., [[D]]).

Definition 4.2 (PPSS Protocol). A PPSS protocol P for a set of z ≥ 1 documents D = {D1, . . . ,Dz } over an

alphabet Σ is a pair of polynomial-time algorithms P = (Setup, Query).
The setup procedure: ([[D]],auxs ) ← Setup(D, 1λ), is a probabilistic algorithm, run by the data owner, taking as

input the security parameter λ and the document collectionD, and returning its privacy-preserving representation
[[D]] together with an auxiliary pieces of information auxs , which is kept secret by the client.

The query procedure: R ← Query(q,auxs , [[D]]), is a deterministic algorithm which is run interactively by the

client and the server to compute the number of occurrences of the string q∈Σm in each document of D. The client
obtains R = OD,q =

⋃z
i=1ODi ,q , where OD,q is as per Def. 4.1, while the server outputs nothing.

The Query procedure iteratesw ≥ 1 rounds, where each round corresponds to the execution of three algorithms:

• Trapdoor: [[q]]j ← Trapdoor(j,q,auxs , res0, . . . , resi−1), is a probabilistic algorithm, run at client side,

which employs auxs and the results of previous rounds to build the privacy-preserving representation

(a.k.a. trapdoor) [[q]]j of the queried substring q for the j-th round.

• Search: [[resj ]] ← Search([[q]]j , [[D]]), is a deterministic algorithm, run at server side, which employs

[[q]]j and [[D]] to compute a privacy-preserving representation of the result for the j-th round, i.e., [[resj ]].
• Retrieve: resj ← Retrieve([[resj ]],auxs ), is a deterministic algorithm, run at client side, which takes as

inputs [[resj ]] and auxs and computes the result resj .

Relying on the substring search algorithm based on the BWT transformation reported in Alg. 1 and the

Lipmaa’s PIR protocol based on the FLAHE Paillier scheme, we now provide the operational description of the

proposed PPSS protocol, reported in Alg. 5 and Alg. 6.

The document collection D employed for the searching operation is encrypted with a symmetric-key, and

outsourced to the remote server. Along with the encrypted version of D, the client computes the indexing

structure [[D]] by employing the Setup procedure.

This procedure (see Alg. 5) takes as input the z documents in D to compute a single string s obtained concate-

nating the documents, interleaved with $ (lines 2–3). The additional input λ is an integer number representing

the computational security level employed to instantiate the underlying cryptographic primitives. Subsequently,

the procedure computes the (|Σ|+1)×(n+1) matrix representation of L=BWT(s), denoted asM in Alg. 1, the cor-

responding 1 × (n + 1) suffix array, SA, and the Rank dictionary with size |Σ|+1, containing pairs (c, l), where
l=Rank(c), 0≤l≤n+1, is the number of characters in s alphabetically smaller than c . As the rows of M are in-

dexed by characters in Σ ∪ {$}, a bijective function Order : Σ ∪ {$} 7→ {0, 1, . . . , |Σ|} is employed to build a

dictionary including pairs (c,o), where c∈Σ∪{$} and o=Order(c) is the unique numerical index corresponding to

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:13

Algorithm 5: Setup Procedure of our PPSS Protocol

Function Setup(D,λ):
Input: Document Collection D = {D1, . . . , Dz }, security

parameter λ
Output: [[D]], privacy-preserving representations of the

indexing structure of D;
auxs , secret auxiliary information employed by

the client to perform search requests

1 begin
2 s ← concat(D1, $, D2, $, . . . , Dz , $)

3 n ←
∑z
i=1 len(Di ) + 1

/* Compute the suffix array SA, the matrix
M and the Rank dictionary for string s
(see Section 3.1) */

/* Compute the dictionary
Order : Σ ∪ {$} 7→ {0, 1, . . . , |Σ | }, containing
pairs (c , o) where c ∈Σ∪{$}, and o=Order(c)
is a unique numerical index. */

4 foreach c ∈ Σ ∪ {$} do
5 base ← Order(c)·(n+1)
6 for j ← 1 to n + 1 do
7 C[base+j] ← Rank(c)+M [c][j]
8 (pkE , skE ) ← E .KeyGen(λ)
9 for i ← 1 to n + 1 do

10 ⟨SA⟩[i]←E .Enc(pkE , SA[i])
11 for i ← 1 to (n + 1) · ( |Σ | + 1) do
12 ⟨C ⟩[i] ← E .Enc(pkE ,C[i])
13 auxs ← (Order, skE )
14 [[D]] ← (⟨C ⟩, ⟨SA⟩)
15 return (auxs , [[D]])

Algorithm 6: Query Procedure of our PPSS Protocol
Function Query(q, auxs , [[D]]):

Input: q,m-character string to be search;

auxs , secret auxiliary information employed

by the client to perform search requests

containing (Order, skE );
[[D]], remotely accessed privacy-preserving

representations of the indexing structure of D,
containing (⟨C⟩, ⟨SA⟩).

Output: Rq , set of positions of occurrences of q in D
Data: (pk, sk), public and private Paillier FLAHE

keypair;

b, radix employed to represent in positional

notation an integer index in the Lipmaa PIR

protocol

1 begin
2 α←0, β←n+1 // start of the 1st phase: Qnum
3 for i ←m downto 1 do
4 α ← α + Order[q[i]] · (n + 1)

5 ⟨h⟩ ← PIR-Trapdoor(pk,b,α)

6 ctx← PIR-Search(⟨h⟩,b, ⟨C⟩)

// ciphertext of ⟨C⟩[α]

7 α ← E .Dec(skE, PIR-Retrieve(sk, ctx))

8

9 β ← β + Order[q[i]] · (n + 1)

10 ⟨h⟩ ← PIR-Trapdoor(pk,b, β)

11 ctx← PIR-Search(⟨h⟩,b, ⟨C⟩)

// ciphertext of ⟨C⟩[β]

12 β ← E .Dec(skE, PIR-Retrieve(sk, ctx))

13 Rq ← ∅ // start of the 2nd phase: Qocc
14 for i ← α + 1 to β do
15 ⟨h⟩ ← PIR-Trapdoor(pk,b, i)

16 ctx← Search(⟨h⟩, ⟨SA⟩) // ciphertext

of ⟨SA⟩[i]

17 Rq←Rq∪E .Dec(skE, PIR-Retrieve(sk, ctx))

18 return Rq

the character indexing a row of M . At lines 4–7, the integer matrix M is converted into a (|Σ|+1)·(n+1) array
of integers, C , built as the concatenation of the rows ofM in ascending order of the numerical index obtained

via the Order function. We note that Rank(c) is summed toM[c][j] at line 7 of Alg. 5 to save the additions that

should be executed later as per lines 5–6 of Alg. 1.

As the data structures C and SA are sufficient to reconstruct s , and thus the document collection D, they are

cell-wise encrypted (lines 9–12) before being outsourced, obtaining arrays ⟨C⟩ and ⟨SA⟩ . To this end, any secure

cipher E can be employed; we choose a symmetric block cipher for efficiency reasons. The algorithms referring

to the mentioned cipher are denoted as (E .KeyGen, E .Enc, E .Dec), where the KeyGen procedure yields a pair of
public and private keys, i.e.: pkE , skE (line 8), where pkE = skE if E is a symmetric-key cipher.

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:14 • N. Mainardi, A. Barenghi, G. Pelosi

At line 13, the secret information kept by the client auxs is computed as the dictionary Order and the

secret key of cipher E. Finally, the Setup procedure in Alg. 5 returns the secret data to be kept by the client,

auxs=(Order, skE), and the privacy-preserving representation [[D]], given by the pair of encrypted data structures
(⟨C⟩, ⟨SA⟩), of the indexing structure of the document collection, to be outsourced to the server.

The Query procedure, reported in Alg. 6, takes as input them-character string to be searched q, the secret
auxiliary information auxs= (Order, skE), and the privacy-preserving representation [[D]] = (⟨C⟩, ⟨SA⟩).
The operations performed during the execution of the Query procedure are grouped in two phases. The first

phase, labeled as Qnum (lines 2–12), corresponds to lines 1–6 in Alg. 1, and allows to evaluate as β − α the total

number of occurrences of q in the remotely stored documents. In particular, all memory look-ups performed on

the matrix representationM of the BWT of the document collection in Alg. 1 are realized accessing the cells of

the array ⟨C⟩. Realizing each access via the primitives of any PIR protocol allows to hide the position of the array

cell requested by the client, thus providing search pattern privacy of the retrieved content. Indeed, without the

PIR protocol, the adversary, i.e., the server, would be able to infer the similarity between the strings searched in

two separate queries due to deterministic access to the same positions of the array ⟨C⟩. In our PPSS protocol, the

Lipmaa PIR protocol described in Section 3.2 is adopted due to its efficiency in terms of communication complexity.

Finally, as each cell ⟨C⟩[h] stores an encrypted content, the client needs to further decrypt the material returned

by the PIR-retrieve procedure, as shown in line 7 (line 12 resp.).

The second phase, labeled as Qocc (lines 13–17), corresponds to lines 7–9 in Alg. 1, and it allows to compute

the set of positions, in the remotely stored documents, where the leading characters of the occurrences of q are

found. Similarly to the previous phase, each memory look-up to the suffix array data structure in Alg. 1 is realized

by accessing privately the cells of the outsourced array ⟨SA⟩.
Informally, the security of our protocol is based on the security of the PIR protocol employed and on the

semantic security of the encryption scheme used to encrypt the array ⟨C⟩ and the suffix array ⟨SA⟩, as the
server observes only PIR queries on arrays encrypted with a semantically secure encryption scheme. The

only information leaked to the server is the size of the array ⟨C⟩ and of the suffix array ⟨SA⟩, which are both

proportional to the size n of the document collection, while the lengthm of the substring q and the number

of occurrences |Rq | are leaked by the number of iterations required by the execution of the phases in Alg. 6

labeled as Qnum and Qocc, respectively. Concerning the computational and communication complexities of the

Setup and Query procedures, we note that the former costs O(n) bit operations, while storing [[D]] on the

server requires O(n) space. The cost of the Query procedure is split between the client and the server, obtaining

O((m+ |Rq |) ·b log
3(N ) log4b (n)) andO((m+ |Rq |) ·

n
b log

3(N )) complexities, respectively, where N is the modulus

employed in the FLAHE Paillier keypair. The amount of data exchanged between the client and the server

amounts to O((m + |Rq |) · log(N )b log
2

b (n)).
We remark that any PIR protocol can be employed in our PPSS protocol, although the computational and com-

munication costs depend on the PIR at hand. Therefore, improvements in terms of computation or communication

in a PIR solution may be immediately applicable in our PPSS protocol. In particular, XPIR [29] and SealPIR [1]

are two recently proposed PIR solutions that improve upon the scheme introduced by Stern in [37] showing

significant improvements in terms of computation by relying on lattice-based additive homomorphic encryption

schemes instead of number-theoretic ones such as the Paillier scheme employed in this work. Furthermore, XPIR

and SealPIR rely on the Learning With Error trapdoor, which in turn provides post-quantum security assurances.

Nonetheless, their communication cost amounts tod ·n
1

d +Fd , where F = Θ(1) andd is a value chosen by the client

at each query. We observe that these protocols cannot achieve a polylogarithmic communication cost: indeed,

if d = O(1), then the communication cost is O(n
1

O (1) ); if d = Θ(log(n)), then the communication cost becomes

O(log(n) + F log(n)) = O(n). Since the main goal of this work is achieving a polylogarithmic communication cost,

to make our protocol usable in scenarios with limited bandwidth (e.g., on mobile phones), we decide to employ

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:15

Table 2. Performance improvements enabled by batched retrieval of occurrences in our PPSS protocol

Performance Metric Our PPSS Protocol Our Enhanced Protocol with Batched Retrieval

Client Computation O((m + oq) · b log
3(N ) log4b (n)) O(m · b log3(N ) log4b (n) + oq · log

2(N ) log5b (
n
oq
))

Server Computation O((m + oq) ·
n
b log

3(N )) O((m + 1) · nb log
3(N ))

Communication O((m + oq) · log(N )b log
2

b (n)) O(m · log(N )b log2b (n) + oq log(N ) logb (
n
oq
))

Number of Rounds m + oq m + 1

the Lipmaa’s PIR despite a possibly higher computational cost at server side. In application scenarios where a

non polylogarithmic communication cost is acceptable, replacing the Lipmaa’s PIR protocol with either XPIR or

Seal PIR remains a viable solution.

Batched Retrieval of Occurrences. In the Qocc phase of the Query procedure (lines 13–17 in Alg. 6), the client

performs oq = |Rq | = β − α Lipmaa’s PIR queries, one for each occurrence of the string q. We now introduce

an optimization that allows to retrieve all the occurrences in a single communication round, reducing both

computational and communication costs.

This optimization is based on enabling the retrieval of multiple entries (i.e., batches) of the outsourced dataset

(array) managed by the Lipmaa’s PIR protocol. To this extent, we introduce an additional parameter of the PIR

protocol, denoted as a, that specifies the number of entries to be retrieved with a single PIR query; specifically,

the dataset A with n elements is split in ⌈na ⌉ chunks of a consecutive entries each to allow the i-th chunk,

i ∈ {0 . . . , ⌈na ⌉−1}, to be retrieved by the client issuing a single PIR query. In particular, the client generates a

Lipmaa’s PIR trapdoor to retrieve the i-th entry from a dataset with ⌈na ⌉ entries; the server splits the datasetA in a
arrays, with the j-th one, j ∈ {0, . . . ,a−1}, containing all the entries A[h] such that h mod a = j , and employs the

trapdoor to retrieve the i-th entry from each of these a arrays; these a entries are then sent back to the client. The

computational and communication costs for the PIR-Trapdoor procedure are reduced to O(b log3(N ) log4b (
n
a ))

and O(b log(N ) log2b (
n
a )), respectively, as a trapdoor for a dataset with ⌈na ⌉ entries is generated in place of a

trapdoor for a dataset with n entries; conversely, both these costs increase by a factor a in the PIR-Retrieve
procedure, because a entries are sent back from the server and then decrypted by the client. Most importantly,

the computational cost at the server side is unchanged: indeed, the server performs a PIR-Search operations
over a dataset with ⌈na ⌉ entries, thus yielding a O(a n

ab log(N )) = O(nb log(N )) cost.
In the Query procedure of our PPSS protocol, the client can hinge upon this batched retrieval strategy in the

Qocc phase to retrieve from the encrypted suffix array ⟨SA⟩ the oq = β − α elements {⟨SA⟩[α + 1], . . . , ⟨SA⟩[β]}

with a single PIR query. Specifically, the client chooses a valuea ≥ oq as theminimum value such that ⌊ α+1a ⌋ = ⌊
β
a ⌋:

this choice guarantees that all the oq elements {⟨SA⟩[α +1], . . . , ⟨SA⟩[β]} are found in the ⌊ α+1a ⌋-th chunk among

the ⌈na ⌉ ones of ⟨SA⟩. This strategy improves both the computational and communication costs of the queries in

our PPSS protocol, as reported in Tab. 2. Remarkably, the computational cost at server side becomes independent

from the number of occurrences oq , as well as a significant improvement is observed in terms of communication

cost because of the Qocc phase being performed in a single round instead of oq ones.

4.1 Multi-User Extension
Differently from many of the current PPSS protocols, our approach can be promptly and efficiently adapted to a

multi-user scenario where a data-owner outsources the indexing data structure to a service provider, and multiple

users equipped with their own Pailler FLAHE key-pair access the data structure running the PIR primitives

simultaneously.

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:16 • N. Mainardi, A. Barenghi, G. Pelosi

Algorithm 7: Optimized PIR-Search algorithm

Function PIR-Search(A, b , ⟨h ⟩):
Input: A, remote array with n entries

b ≥ 2, radix chosen by the client to construct ⟨h ⟩;
⟨h ⟩, trapdoor for the index h, given by t arrays hdigit

0
, . . . , hdigitt−1, t =

⌈
logb (n)

⌉
, each with b ciphertexts (see

Section 3.3).

Output: content of the cell A[h]
return RecursiveRet (⟨h ⟩, A, ⌈t ⌉, 1, n, b)

Function RecursiveRet(⟨h ⟩, A, l , begin, end, b):
if end − begin = 0 then

return A[begin]

size←
⌊
end−begin

b

⌋
, acc← 1

for i ← 1 to b do
el← RecursiveRet(⟨h ⟩, A, l − 1, begin, begin + size)
begin← begin + size + 1

acc← (acc · hdigitl [i]el) mod N l+1

return acc

In such a setting, each user is guaranteed to perform its own substring search queries without leaking any

information to both other users and the service provider itself. Indeed, the search and access pattern privacy of

the queries of a user are guaranteed even in case of collusion between other users and the service provider.

From an operational point of view, the data owner runs the Setup procedure shown in Alg. 5, computing the pair

of arrays [[D]]=(⟨C⟩, ⟨SA⟩) to be outsourced and sharing the secret auxiliary information auxs ← (Order, skE)
with the authorized users. Each authorized user in turn can independently run a modified version of the Query
procedure shown in Alg. 6 to find occurrences of a substring of her/his choice. The modifications to the Query
procedure consists in replacing the use of the original Lipmaa’s PIR-Search primitive with the one reported in

Alg. 7, which aims to reduce the memory consumption of the Lipmaa’s PIR-Search procedure when multiple

queries are simultaneously performed. Indeed, each run of the PIR-Search procedure in Lipmaa’s protocol

(Section 3.3) runs t = ⌈logb (n)⌉ iterations, with the i-th iteration computing an array ⟨Ahi−1⟩ with ⌈
n
b i ⌉ elements.

In particular, the first iteration computes an array ⟨Ah0⟩ with ⌈
n
b ⌉ entries, in turn requiring O(n) memory to be

allocated. Therefore, if u queries are performed simultaneously, the memory consumption of Lipmaa’s protocol is

O(n + u · n), providing poor scalability in case of multiple queries.

To address this scalability issue, we propose to schedule differently the operations performed in the PIR protocol.

Specifically, the naive PIR-Search procedure serializes the computation of the entire arrays ⟨Ah0⟩, . . . , ⟨Aht−1⟩.

Nonetheless, it is possible to compute the element ⟨Ah1⟩[0] as soon as the b elements ⟨Ah0⟩[0], . . . , ⟨Ah0⟩[b−1] are
computed, and, similarly, compute ⟨Ah1⟩[1] as soon as the b elements ⟨Ah0⟩[b], . . . , ⟨Ah0⟩[2b−1] are computed.

Considering a generic element ⟨Ahi ⟩[j], 1≤i≤t−1, 0≤j≤⌈
n

b i+1 ⌉, we can compute it as soon as the b elements

⟨Ahi−1⟩[b·j], . . . , ⟨Ahi−1⟩[b·j+b−1] are available. We note that an element of ⟨Ah0⟩ can always be computed as all

the elements in the dataset A are available; therefore, to avoid that all elements of ⟨Ah0⟩ are computed earlier

than all the other elements of arrays ⟨Ah1⟩, . . . , ⟨Aht−1⟩, we rely on the following rule to schedule the operations:

an entry of an array ⟨Ahi ⟩, 0≤i≤t−1, is computed only if there are no entries of arrays ⟨Ahj ⟩, t−1≥j>i , that are
ready to be computed. This schedule of the operations is achieved by the recursive computation in Alg. 7.

The computational complexity of this algorithm is clearly equivalent to the naive iterative implementation, as

the same operations are performed. Nevertheless, it exhibits a sublinear memory consumption per query. Indeed,

the maximum depth of recursion isO(log(n)), which means that only the memory for theO(log(n)) recursive calls
is required. Each recursive call storesO(l log(N )) bits due to Paillier ciphertexts in Z∗

N l+1 , thus the overall storage

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:17

cost is:

∑ ⌈log(n)⌉
l=1 O(l log(N ))=O(log2(n) log(N )). In conclusion, when u queries are simultaneously performed, the

server stores only O(n+u·log2(n)) memory, with significant savings w.r.t. a naive approach.

Since each user employs for Lipmaa’s PIR its own keypair for Paillier FLAHE scheme, then even if all the

other users collude with the server to eavesdrop queries of the user at hand, they observe only ciphertexts of

a semantically secure encryption scheme that can be decrypted only by the user issuing the substring search

query. Therefore, users colluding with the server cannot learn any meaningful information about queries of non

colluding users. This property is crucial to discourage collusion between the untrusted server and authorized

users in our PPSS protocol: indeed, although the server is interested in such a collusion, as it would allow to

learn the content of the document collection, the authorized users have no incentive to collude with the server.

4.2 Verifiability of retrieved data
In the following we enhance the design of the PPSS protocol presented in the previous section to provide a

simple, yet effective, mechanism allowing clients to verify the correctness of the retrieved data with strong

guarantees that they have not been accidentally tampered with by the storage service provider. In the considered

semi-honest adversarial settings, the storage service provider is trustworthy to execute the steps of the PPSS

protocol faithfully, even if it is interested to acquire as much information as possible on the stored data. However,

chances of accidental or misconfiguration errors in the implementation or deployment of the protocol at server

side make a mechanism to verify the correctness of accessed data elements a desirable feature.

We introduce a mechanism allowing the client to check whether the retrieved element matches the one

prepared by the data owner or not. In particular, the retrieved entry may either be corrupted or corresponding

to an entry different from the requested one. To this end, similarly to the approach followed in [20], we rely

on a cryptographic (keyed) message authentication code (MAC) to detect that an outsourced data element a
is corrupted (i.e., MAC(k,a)), while to prevent the chance that another legitimate entry is retrieved in place

of the requested one, each entry of the array is associated with a unique MAC key, specific for the entry at

hand. Specifically, the value of the secret cryptographic key employed to compute the MAC of each entry of the

outsourced array must fulfill the following properties: i) it must depend on the index of the array entry; ii) it
must be efficiently computable by the client given the index of an entry as an input.

In our design both properties are provided by generating the MAC key of an array entry via a keyed Pseudo

Random Function (PRF) fed with a (secret) master key, shared by the data owner with each user, and the index of

the entry at hand. A cryptographic PRF is an efficiently-computable function which emulates a random oracle. In

particular, there is no efficient algorithm able to distinguish (with significant advantage) between the output of

the chosen PRF and a the output of a random oracle, i.e., the outputs of a PRF are fixed completely at random.

The PPSS protocol presented in the previous section is therefore extended in the following way. The data

owner selects a master secret key msk
R
← {0, 1}λ , where λ is the security margin (e.g., λ ∈ {128, 192, 256}), and a

keyed PRF F : {0, 1}λ × {0, 1} ⌈log(n)⌉ 7→ {0, 1}λ , which takes as input a master key and an integer value denoting

the index of an n-cell array. A possible instance of the said PRF is given by the AES-CBC encryption function

yielding only the last block of the ciphertext and employing a λ-bit key, λ ∈ {128, 192, 256}. Subsequently, the
value of each entry of the array A to be outsourced is augmented with its corresponding MAC, i.e., each A[i] = ai ,
i ∈ {1, . . . ,n}, is replaced with A[i] = (ai ,MAC(ki ,ai )), where ki = F (msk, i − 1). When the client issues a query

to retrieve the array element with index h, it gets back the pair of values (ah′,MAC(kh′,ah′)) and can verify the

correctness of the retrieved data by deriving kh = F (msk,h−1) and checking if the re-computation of MAC(kh,ah)
yields the same value MAC(kh′,ah′) returned by the server, thus concluding whether h = h′ or not. In case of an

unsuccessful verification, the client can provide strong (cryptographic) evidence that the server either returned

an accidentally corrupted element or wrongly returned an uncorrupted entry in place of the requested one. We

remark that the communication and computational overheads due to the transmission of the MAC value and its

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:18 • N. Mainardi, A. Barenghi, G. Pelosi

Table 3. Wildcard meta-characters available in the Unix glob patterns with their semantic

Wildcard Semantic

∗ Match zero or more arbitrary characters

? Match exactly one character

[abc] Match either a, b or c
[0 − 9] Match a single digit

[!ACG] Match any character except for A, C ad G
[!A − Z ] Match any character except for uppercase letters

re-computation at client-side, respectively, impact on the overall performance of the PPSS protocol in a negligible

way. Indeed, they involve the transmission of a few tens of bytes and the computation of a symmetric-key

cryptographic primitive, which is way more efficient (by two to three orders of magnitude) than the asymmetric

cryptographic operations performed in the PIR-Retrieve procedure.

5 QUERIES WITH WILDCARD CHARACTERS
We now extend our PPSS protocol to enable queries for a string q containing meta-characters, also called wildcards,

that allow to define a language (i.e., a set of strings) over the alphabet instead of a single string. We call a pattern,

denoted by p from here on, any string containing at least one of these wildcards; the language defined by a

pattern p is denoted by Lp. Although a pattern p is usually employed to filter out strings that do not belong to

Lp, in our PPSS protocol we want to find the positions of the (sub)strings in the document collection D that are

also in Lp. From now on, these (sub)strings will be referred to as matches or occurrences of the pattern p over the
document collection; each occurrence is identified by the document where it is located and its starting position

in the document at hand:

Definition 5.1 (Occurrence of a Pattern). Given a document collection D with z ≥ 1 documents D1, . . . ,Dz and

a pattern p, the set of positions of the occurrences of p in Di , i ∈ {1, . . . , z}, is defined as:

ODi ,p =
{
j | 1 ≤ j ≤ len(Di ) ∧ ∃k ≥ j (Di [j, . . . ,k] ∈ Lp)

}
Coherently with Def. 4.1, our PPSS protocol aims at computing, for a pattern p and a document collection D,
the set of positions OD,p =

⋃z
i=1ODi ,p. To specify a pattern p in the queries of our PPSS protocol, we define our

own format building upon the well-known glob patterns1, which denote a simple syntax in the command line

interface (CLI) of Unix-based systems that is largely used to filter out the filenames not belonging to the language

defined by the specified pattern.

5.1 Format of Patterns inQueries
Table 3 reports the meta-characters defined in glob patterns and their semantic. Given the set of characters

defined by an alphabet Σ, the wildcard ∗ is used to match any sequence of characters (even the empty one) over

Σ, while the wildcard ? matches exactly one character in Σ. A character class denotes a syntax to match exactly

one character belonging to a collection (class) of characters specified within square brackets. The collection of

characters can be denoted by either listing all of them or specifying the first and the last of them (in lexicographic

order) separated by a dash (e.g, [a − z] denotes the class of lowercase latin letters). The meta-character ! can be

employed only next to the left square bracket of a character class to denote the elements of Σ different from the

ones belonging to the collection pointed out afterwards (e.g., [!a − z] denotes all the characters in the alphabet

except for lowercase latin ones).

1
http://man7.org/linux/man-pages/man3/glob.3.html

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:19

To increase the expressiveness of a pattern, in our own format we employ the additional meta-character | to

denote the union operator, i.e., given k ≥ 2 strings β1, . . . , βk , the pattern β1 | . . . |βk matches any string among

the k given ones. Together with the union operator we also introduce round brackets as meta-characters to specify

unambiguously its scope, e.g., a(a |b)c . Besides querying strings containing wildcard characters, we also consider

prefix (resp. suffix) queries to match strings positioned as prefix (resp. suffix) of each document in the collection

D, as customary in information retrieval contexts [14]. For instance, the widely used glob pattern pq = q∗ (resp.
pq = ∗q) can be used to issue a prefix (resp. suffix) query, requesting to match all documents starting (resp.

ending) with a string equal to q. Since we define an occurrence of a pattern p as the position in the document

where a sequence of characters match (see Def. 5.1), we need to introduce a special symbol to specify that such a

sequence must appear at the beginning or at the end of a document. To this extent, we add to our format the

special symbol &, called meta-delimiter, which should appear only as the first or last character of a pattern.

The definition of the format of patterns in the expression of queries in our PPSS protocol is formally captured

by Def. 5.2, Def. 5.3 and Def. 5.4, introduced to properly frame the use of the wildcard ∗.

Definition 5.2 (Star-Free Pattern). Given an alphabet Σ, the set G of glob wildcards reported in Tab. 3, the

union operator | and the round brackets meta-characters, a pattern p is star-free if and only if it is built as the

concatenation of k ≥ 1 strings p = α1α2 · · ·αk , where each αi belongs to one of the following types:

(1) αi ∈ Σ
+
(strings composed by at least one alphabet character)

(2) αi ∈ {G \ {∗}}
+
(strings composed by at least one meta-character in G, except ∗)

(3) ∃ β1, · · · , βh,h ≥ 2 : αi = (β1 | . . . |βh) ∨ αi = (β1 | · · · |βh−1 |ε), where all β1, · · · , βh are star-free patterns.

ε denotes here the empty string (i.e., a string with no characters) that is appended to a meta-character | to

point out a possible match with no character in Σ.

Definition 5.3 (Well formed Star-Free Pattern). Given a star-free pattern p = α1 · · ·αk over the alphabet Σ, it is a
well formed star-free pattern if and only if there exists 1 ≤ h ≤ k such that αh ∈ Σ

+
.

A query string is considered as a well formed star-free pattern if it contain at least one type (1) substring and

does not contain the wildcard ∗. It is worth noting that such a query string may contain the union operator only if

it is applied to star-free patterns (not necessarily well formed). We introduce such a restriction for simplicity and

efficiency reasons, as the extended PPSS protocol enabling queries for strings with wildcard characters (reported

in the next section) exhibit a computational complexity linear in the length of the longest string among the ones

defined by the queried pattern. Indeed, the presence of a ∗ wildcard would easily increase the complexity to be

linear in the size of the outsourced index.

Definition 5.4 (Well Formed Patterns). Given an alphabet Σ, the set G of glob wildcards reported in Tab. 3, the

union operator |, the round brackets meta-characters, and the meta-delimiter symbol &, a pattern p is a well
formed pattern if and only if there exist k ≥ 1 well formed star-free patterns α1, · · · ,αk such that p exhibits one

of these structures:

(1) p = α1 ∗ α2 ∗ · · · ∗ αk
(2) p = &α1 ∗ α2 ∗ · · · ∗ αk (prefix pattern)

(3) p = α1 ∗ α2 ∗ · · · ∗ αk& (suffix pattern)

(4) p = &α1 ∗ α2 ∗ · · · ∗ αk& (prefix-suffix pattern)

A well formed pattern has some restrictions on the usage of ∗ wildcard: indeed, the structure of a well formed

pattern mandates that it cannot start or end with a ∗. We introduce this restriction since a pattern pγ = ∗γ∗,
γ ∈ Σ+, in our format would match any sequence of characters in the document collection having γ as a substring

thus yielding too many (unuseful) occurrences (see Def. 5.1). Indeed, given a document Di ∈ D, i ∈ {1, . . . , z},
z ≥ 1, if j is the position of an occurrence of pγ in Di , then every position 1≤h≤j is also an occurrence of pγ in Di .

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:20 • N. Mainardi, A. Barenghi, G. Pelosi

5.2 PPSS Protocol for Pattern
In the following, we show how to extend our PPSS protocol to deal with queries asking for the occurrences of a

well-formed pattern p. We proceed in two steps: we first show how to perform queries asking for the occurrences

of a well-formed star-free pattern (see Def. 5.3) in Alg. 8; then, we show how to perform queries for a generic

well-formed pattern (see Def. 5.4) in Alg. 9, relying on Alg. 8 as a building block.

Queries with Well-formed Star-free Patterns. Algorithm 8 shows how to perform queries for a well-formed

star-free pattern hinging upon the following decomposition of the input pattern.

Lemma 5.5 (Decomposition of Well-Formed Star-Free Pattern). Given a well-formed star-free pattern p
over an alphabet Σ, there exists a set of 2k + 1, k ≥ 1, strings {γ0,ω1,γ1, . . . ,ωk ,γk } such that p = γ0ω1γ1 . . .ωkγk ,
where:

• ω1, . . . ,ωk ∈ Σ
+ (i.e., type (1) strings in Def. 5.3)

• All strings γ0, . . . ,γk are a concatenation of type (2) or type (3) strings only (see Def. 5.3)
• γ0 and γk may equal the empty string ε

Proof. Following Def. 5.3, a well-formed star-free pattern p is composed by h ≥ 1 type (1), (2) or (3) strings,

p = α1 · · ·αh , where at least one of them is a type (1) string. We prove the lemma by induction over the number h
of type (1), (2) or (3) strings composing p. Assuming h = 1, there is only the pattern p = α1, where α1 is a type
(1) string: in this case, p can be decomposed as γ0α1γ1, where γ0 = γ1 = ε , which satisfies the lemma. Assuming

h = 2, p = α1α2, there are two possible cases: if both α1 and α2 are type (1) strings, then p can be decomposed as

γ0ω1γ1, where γ0 = γ1 = ε and ω1 = α1α2, which satisfies the lemma; if α1 (resp. α2) is a type (1) string and α2
(resp. α1) is either a type (2) or a type (3) string, then p can be decomposed as γ0α1α2 (resp. α1α2γ1), where γ0 = ε
(resp. γ1 = ε), which satisfies the lemma.

We now proceed with the inductive step. We want to prove that any well-formed star-free pattern p composed

by h+1 type (1), (2) or (3) strings p = α1 · · ·αh+1 can be decomposed as in the lemma. Consider p = α1p
′
, with

p′ = α2 · · ·αh+1. The pattern p
′
is composed by h strings, thus, by inductive hypothesis, it can be decomposed as

γ ′
0
ω ′
1
γ ′
1
· · ·ω ′kγ

′
k for a k ≥ 1. To encompass a generic pattern p with h+1 strings, we have four different situations:

(1) α1 is a type (1) string and γ
′
0
= ε , as a consequence p can be decomposed as γ ′

0
ω1γ

′
1
· · ·ω ′kγ

′
k , with ω1 = α1ω

′
1

(2) α1 is a type (1) string and γ
′
0
, ε , as a consequence p can be decomposed as γ0α1γ

′
0
ω ′
1
γ ′
1
. . .ω ′kγ

′
k , with γ0 = ε

(3) α1 is either a type (2) or type (3) string and γ
′
0
= ε , as a consequence p can be decomposed as α1ω

′
1
γ ′
1
. . .ω ′kγ

′
k

(4) α1 is either a type (2) or type (3) string and γ ′
0
, ε , as a consequence p = γ0ω

′
1
γ ′
1
. . .ω ′kγ

′
k , with γ0 = α1γ

′
0

□

We recall that, in our PPSS protocol, an occurrence is identified by a pair (pos,o f f ), where pos denotes the
starting position of the document Di in the string s = D1$D2$ . . .Dz$ (derived from the outsourced document

collection D = {D1, . . . ,Dz }) where the occurrence is located, while o f f denotes the relative position of the

occurrence in Di . Along with this information, the StarFreeQuery procedure in Alg. 8 associates to each of the

occurrences in the returned set Rp also its ending position in the document Di where it is located in order to ease

the procedure in Alg. 9 concerning a query with a well-formed pattern. Analogously to the Query procedure

reported in Alg. 6, the StarFreeQuery procedure in Alg. 8 takes as input a triple consisting of a well-formed

star-free pattern p, the auxiliary secret information which is needed to generate PIR trapdoors and decrypt the

results, and the privacy-preserving representation of the document collection [[D]]. Nonetheless, [[D]] has to
be enriched with the encrypted string ⟨s⟩ obtained applying the same semantically secure cipher E and key K
employed for the original components of the privacy preserving representation of the outsourced document

collection, i.e., ⟨C⟩ and ⟨SA⟩.

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:21

Algorithm 8: Query procedure for well-formed star-free patterns in our PPSS protocol

Function StarFreeQuery(p, auxs , [[D]]):
Input: p: well-formed star-free pattern to be searched

auxs = (Order, skE ): secret auxiliary information employed by the client for the queries

[[D]] = (⟨C ⟩, ⟨SA⟩, ⟨s ⟩): remotely accessed privacy-preserving representation of D
Output: Rp : set of starting and ending positions of the occurrences of p in D

1 begin
2 (γ0, ω1, . . . , ωk , γk ) ← ParsePattern(p)

3 if k = 1 ∧ γ0 = ε ∧ γk = ε then
4 occ ← Query(ω1), Rp ← ∅
5 foreach o ∈ occ do

/* Query returns the pair (pos , of f ) denoting the starting position of the document where

the occurrence is located and its relative position from it */

6 Rp ← Rp ∪ (o .pos , o .of f , o .of f +len(ω1)−1)

7 return Rp
8 αmin ← 0, βmin ← n
9 for i ← 1 tok do

10 (α , β ) ← QueryNum(ωi , auxs , [[D]])
11 if β − α < βmin − αmin then
12 βmin ← β , αmin ← α , ωmin ← ωi
13 Occ ← BatchedRetrieval(αmin+1, βmin , ⟨SA⟩, auxs )
14 Rp ← ∅, len ← ComputeMaxLength(ωmin . . .ωkγk )
15 max_len ← ComputeMaxLength(p),min_len ← ComputeMinLength(p)

16 foreach o ∈ Occ do
17 end ← o .pos + o .of f + len
18 star t1 ← end −max_len, star t2 ← end −min_len
19 str ← BatchedRetrieval(star t1, end , ⟨s ⟩, auxs )
20 for j ← star t1 to star t2 do
21 match_len ← MatchShortestPrefix(str [j − star t1 + 1, . . . ,max_len], p)
22 if match_len > 0 then
23 of f set ← j − 1 − o .pos
24 Rp ← Rp ∪ (o .pos , of f set , of f set+match_len−1)
25 return Rp

The procedure follows the decomposition of p defined in Lemma 5.5, parsing it properly (line 2). If the pattern

is a type (1) string (line 3) it invokes the Query procedure in Alg. 6 as shown in line 4 of Alg. 8. After getting the

occurrences of the pattern, the StarFreeQuery procedure enriches each of them with the corresponding ending

position in the document where they are located. Such an ending position is computed considering the starting

position and the length of the instance of the pattern at hand as shown in lines 5–7.

In case the pattern p has some wildcards, the algorithm proceeds in two phases. In the first one (lines 8–13),

the client considers the k ≥ 1 type (1) strings ω1, . . . ,ωk in p, with the aim of locating the one with the minimum

number of occurrences in D. To this extent, the algorithm executes, for each type (1) string ωi , i ∈ {1, . . . ,k},
the same steps performed in the Qnum phase of the Query procedure in Alg. 6 (denoted as QueryNum in line 10),

computing the indexes α, β identifying the portion SA[α+1, . . . , β] of the suffix array that stores the oωi = β − α
positions of occurrences of ωi , later identifying the string ωmin with the least number of them (lines 11–12).

Then, the batched retrieval method is employed to retrieve with a single PIR query the set of occurrences of ωmin ,

denoted as Occ in line 13.

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:22 • N. Mainardi, A. Barenghi, G. Pelosi

The second phase (lines 14–25) uses the occurrences in Occ to finally compute the ones of the pattern p,

returning them in the output set Rp. Indeed, each sequence of characters matching the pattern p must contain

ωmin as a substring, thus there will be an occurrence o ∈ Occ having position po = o.pos + o.o f f over s between
the starting and ending positions of the occurrence of the pattern p at hand. As a consequence, the occurrences

of p are computed by analyzing the characters of s preceding and succeeding each occurrence o ∈ Occ . To
this end, Alg. 8 employs two procedures, ComputeMaxLength and ComputeMinLength, that, given a star-free

pattern p, compute the lengths of the longest and shortest strings in Lp (the set of all possible strings matching p),

respectively. Indeed, since a star free pattern may contain a union operator applied to strings β1, . . . , βh with

different length, the length of an occurrence of a pattern may vary depending on which string among β1, . . . , βh is

matched in the occurrence. In the StarFreeQuery procedure, the algorithm first employs the ComputeMaxLength
procedure to obtain the length, len, of the longest possible string matching the pattern p shortened to start from

ωmin (line 14); then, it computes the lengths of the longest and shortest strings matching the whole p asmax_len
andmin_len at line 15.

For each occurrence o ∈ Occ , the biggest possible position of the final character of a substring matching p

and including s[po], po = o.pos+o.o f f , is computed as end = po + len (line 17). A range start1, · · · , start2 for
the possible position of the first character of a substring matching p and including s[po], po = o.pos+o.o f f ,
is evaluated by computing start1 = end −max_len and start2 = end −min_len (line 18). Subsequently, the

sequence of characters str = s[start1, · · · , end] is obliviously fetched via the enhanced version of the Lipmaa’s

PIR protocol employing a batched data retrieval (line 19). The retrieved sequence of characters str includes

all the occurrences of p containing the character s[po] and with initial character positioned over str between
1 and start2 − start1 + 1. Thus, the occurrences of p over str are evaluated searching for the shortest prefix

match between str [j − start1 + 1 · · ·max_len] and the possible strings matching p (i.e., the ones in Lp), with
start1 ≤ j ≤ start2. If the said shorted prefix match exists, the starting and ending positions of the occurrence p

are inserted in the output set Rp together with the starting position of the document in s where the occurrence at
hand is located, i.e., o.pos , (lines 21–24).
We now analyze the computational and communication costs of the StarFreeQuery algorithm fed with a

pattern p that is analyzed by decomposing it as p = γ0ω1γ1 . . .ωkγk , k ≥ 1. Let us denote as oωi the number of

occurrences of ωi in the document collection D, asm the length of the longest possible string matching p, i.e.,

m=ComputeMaxLength(p), and asmω=
∑k

i=1 len(ωi ) the sum of the lengths of type (1) strings ω1, . . . ,ωk .

Concerning the communication cost, in the first phase of the algorithm (lines 2–13) the client sends

O(mωb log
2

b (n) log(N )) bits to the server (with N and b being parameters employed in the Lipmaa’s PIR protocol

as the cryptographic modulus of the Pailler’s scheme and the radix value to compute trapdoors, respectively),

while the server sends back O((mω+omin) · logb (n) log(N )) bits, where omin = min(oω1
, . . . ,oωk ); this cost is

largely dominated by the communication cost of the second phase (lines 14–25), which amounts to

O(omin · (b log
2

b (n) log(N )+m logb (n) log(N ))), that is the cost of omin PIR queries, each of which retrievingO(m)
characters from ⟨s⟩.
The computational cost at client side, which amounts to O(omin · (b log

4

b (n) log
3(N ) +m log

5

b (n) log
2(N ))), is

due to the omin queries that retrieve O(m) characters from ⟨s⟩; indeed, the computational cost to match the

pattern p with the string downloaded from the server is negligible with respect to the cryptographic operations.

Lastly, the computational cost at server side amounts to O((mω+omin) ·
n
b log

3(N )), which is obtained by adding

the cost of executing the QueryNum procedure k times and the cost of retrieving omin substrings from ⟨s⟩.

Dealing with Meta-Delimiters. To employ the StarFreeQuery algorithm as a building block during the

execution of queries with well-formed patterns (Def. 5.4), it must be extended to manage also the meta-delimiters

preceeding or succeeding a well-formed star-free pattern p. To this extent, the ParsePattern procedure must

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:23

convert each input meta-delimiter character & into the end-of-string delimiter $ employed to concatenate the

documents in the collection D into the string s . Two cases are possible:

• if the replaced $ preceedes (resp. succeedes to) the type (1) string ω1 (resp. ωk ), then it is merged with the

string at hand and the StarFreeQuery procedure proceeds as shown in Alg. 8. Indeed, the type (1) string

enriched with the merged symbol $ may be processed by either the Query or the QueryNum procedure. Both
procedures support prefix, suffix and prefix-suffix queries without any further modifications. Indeed, the

pattern $ω1 (resp. ωk$) can occur only at the beginning (resp. end) of a document in s , while the pattern
$ω1$ can match a document only if the entire document is equal to ω1.

• If the replaced $ neither preceeds nor succeeds a type (1) string, then the algorithm exploits the fact that

the number of occurrences of the pattern with the meta-delimiters is at most z, one for each document

Di in s = D1$ · · ·Dz$. Therefore, if, at the end of the loop at lines 9–12, the string ωmin has more than

z occurrences, then the StarFreeQuery, instead of retrieving its occurrences at line 13, retrieves the

occurrences of $ in s . Specifically, these are stored in the first z entries of the suffix array and so they can

be retrieved at line 13 by feeding BatchedRetrieval procedure with αmin = 0, βmin = z. Obviously, since
now the occurrences in Occ no longer refers to the string ωmin but to the symbol $, the computation of

the variable len at line 14 must be modified accordingly: that is, if the meta-delimiter preceeds p, then len
equals ComputeMaxLength(p) plus the number of meta-delimiters, otherwise len = 0.

Queries with Well-formed Patterns. The procedure QueryPattern in Alg. 9 extends our PPSS protocol

allowing to locate all the occurrences of a well-formed pattern (see Def. 5.4). The algorithm hinges upon the

decomposition of a well-formed pattern p in a set of k ≥ 1 well-formed star-free patterns α1, . . . ,αk (see Def. 5.4).

Specifically, given all the occurrences of each of these k patterns in the document collection D = {D1, . . . ,Dz }, it

is possible to construct an occurrence of p over a document D j in D, 1 ≤ j ≤ z, by finding a set of occurrences

ok , j = {o1, j , . . . ,ok , j } located in D j such that oi , j is an occurrence of αi , i ∈ {1, . . . ,k}, and ∀ i ≤ k−1, oi , j .end <
oi+1, j .beдin, where oi , j .end (resp. oi , j .beдin) denotes the ending (resp. starting) position of the occurrence oi , j .
Indeed, ok , j identifies an occurrence of p in document D j starting at position o1, j .beдin and ending at ok , j .end ,
which is composed by occurrences of well-formed star-free patterns α1, . . . ,αk interleaved by an arbitrary number

of characters (due to presence of the wildcard ∗ in p).

Algorithm 9 starts by decomposing the well-formed pattern p in k ≥ 1 well-formed star-free patterns α1, . . . ,αk
(line 2). Any meta-delimiter & found at the beginning (resp. at the end) of p is merged with the pattern α1 (resp. αk ).
Then, for each of these k patterns, the StarFreeQuery procedure is run to retrieve the setOcci of occurrences of
the pattern αi in the document collection (line 4); each setOcci is further partitioned in z portions (Occ

1

i , . . . ,Occ
z
i ),

each containing all the occurrences located in j-th document D j , j ∈ {1, . . . , z} (line 5). This partitioning is simply

performed by grouping the occurrences in Occi , i ∈ {1, . . . ,k}, according to the position pos of the document

where each occurrence is located.

Subsequently, for each documentD j , the algorithm (lines 6–9) constructs occurrences of the well-formed pattern

p from the sets Occ j
1
, . . . ,Occ jk corresponding to the well-formed star-free patterns α1, . . . ,αk . The occurrences

of p are found by the procedure MatchOcc, which, for each oh
1, j ∈ Occ

j
1
, h ∈ {1, . . . , |Occ j

1
|}, computes a set of

occurrences ohk , j corresponding to an occurrence of p; although many sets ohk , j may exists for each oh
1, j , according

to Def. 5.1 they represent the same occurrence of the pattern p, as they share the same starting position o1, j .beдin.

Therefore, there are at most |Occ j
1
| occurrences ofp in the documentD j , one for each o

h
1, j . The MatchOcc procedure

can naively construct all these |Occ j
1
| sets ohk , j in time O(|Occ j

1
| · oα , j ), where oα , j =

∑k
i=1 |Occ

j
i |, that is the sum

of the occurrences of each pattern αi over document D j ; we remark that as |Occ j
1
| = O(oα , j ), then the cost of this

naive implementation becomes O(o2α , j ).

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:24 • N. Mainardi, A. Barenghi, G. Pelosi

Algorithm 9: Query procedure for well-formed

patterns in our PPSS protocol

Function QueryPattern(p, auxs , [[D]]):
Input: p: well-formed pattern to be searched

auxs = (Order, skE ): secret auxiliary
information employed by the client for

queries

[[D]] = (⟨C ⟩, ⟨SA⟩, ⟨s ⟩): remotely accessed

privacy-preserving representation of D
Output: Rp : set of positions of occurrences of p in D

1 begin
2 (α1, . . . , αk ) ← ParsePattern(p)

3 for i ← 1 tok do
4 Occi ← StarFreeQuery(αi , auxs , [[D]])
5 (Occ1i , . . . ,Occzi )←SplitByDocID(Occi )

6 Rp ← ∅
7 for j ← 1 to z do
8 Rp ← Rp ∪ MatchOcc(Occ j

1
, . . . ,Occ jk )

9 return Rp

Algorithm 10: Optimized MatchOcc procedure to find

occurrences of well-formed patterns

Function MatchOcc (Occ1, . . . ,Occk ):
Input: Occ1, . . . ,Occk : set of occurrences of well-formed

star free patterns α1, . . . , αk over the same

document. Each occurrence o in Occi stores the
position o .pos of the document where the occurrence

is located in the string s and the starting and ending

positions (o .beдin and o .end ) of the occurrence in
the document

Output: Rp : set of occurrences of the well-formed pattern

p = α1 ∗ · · · ∗ αk over the same document

1 begin
2 for i ← 1 tok do
3 SortOccByEnd(Occi )
4 foreach o1 ∈ Occ1 do
5 pos ← o1 .end
6 for i ← 2 tok do
7 foreach o ∈ Occi do
8 if o .beдin > pos then
9 pos ← o .end , break

10 DeleteOcc(o)
11 if Occi = ∅ then
12 return Rp
13 Rp = Rp ∪ (o1 .pos , o1 .beдin)
14 return Rp

In Alg. 10, we report an improved version of MatchOcc that reduces the computational cost to

O
(
oα , j · (log(oα , j ) + k)

)
. This procedure relies on the fact that it is possible to build the occurrences of pattern p in

the document D j much more efficiently if each of the k setsOcc j
1
, . . . ,Occ jk is sorted in ascending order according

to the ending positions of the occurrences in it. We now describe how the MatchOcc procedure efficiently finds

all the occurrences of p over document D j from the k sorted sets Occ j
1
, . . .Occ jk ; then, we prove its correctness.

After sorting all the setsOcc j
1
, . . .Occ jk (line 3), the MatchOcc procedure tries to build a set ohk , j for any occurrence

oh
1, j ∈ Occ

j
1
(lines 4-13). Specifically, for each set Occ ji , i ∈ {2, . . . ,k}, it finds (lines 7-10) the first occurrence

satisfying oi , j .beдin > oi−1, j .end (oi−1, j .end is stored in variable pos in Alg. 10). Any occurrence oi , j such that

oi , j .beдin ≤ pos is erased from setOcc ji (line 10); If no occurrence oi , j with oi , j .beдin > pos can be found (line 11),

no more occurrences of p in document D j can be found (line 12). Conversely, in case an occurrence oi , j is found

for every set Occ ji , i ∈ {2, . . . ,k}, then the set ohk , j can be built and thus the occurrence identified by this set,

which starts in position oh
1, j .beдin, is added to R

j
p (line 13), that is the set of occurrences of the well-formed pattern

p over the document D j .

We now prove that MatchOcc allows to find all and only the occurrences of p in a document D j . The set

R j
p computed by the MatchOcc procedure contains only occurrences of p over document D j : indeed, an entry

is added to this set if and only if a set ohk , j = {o1, j , . . . ,ok , j } of occurrences of α1, . . . ,αk , with o1, j = oh
1, j and

oi , j .end < oi+1, j .beдin, for every i < k , is found. We now prove that the procedure finds all the occurrences.

In particular, we want to show these two facts: an occurrence oi , j is erased from set Occ ji (line 10) only if oi , j

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:25

cannot belong to any other set ohk , j except for the ones already found; if, for any of the sets Occ j
2
, . . . ,Occ jk , all

occurrences in the set at hand are erased (line 12), then there are no more sets ohk , j (and thus no more occurrences

of p) to be found. We start by proving the following property:

Lemma 5.6. Consider the k ≥ 1 sets of occurrences Occ j
1
, . . . ,Occ jk of well-formed star-free patterns α1, . . . ,αk

over document D j , with the set Occ ji , i ∈ {1, . . . ,k}, being sorted according to the ending position of each of its
occurrences. If, for an occurrence oi , j ∈ occ

j
i , i ∈ {2, . . . ,k}, there is no set o

h
i , j = {o1, j , . . . ,oi , j }, with o1, j = oh

1, j ,
such that ∀i ′ < i,oi′, j .end < oi′+1, j .beдin, then, for any h′ ≥ h, there is no set oh

′

i , j = {o1, j , . . . ,oi , j }, with o1, j = o
h′
1, j ,

such that ∀i ′ < i,oi′, j .end < oi′+1, j .beдin

Proof. Assume that the thesis of the Lemma is false. This implies that, even if there is no set ohi , j = {o1, j , . . . ,oi , j },

with o1, j = oh
1, j , for an occurrence oi , j ∈ occ

j
i , there exists a set o

h′
i , j = {o1, j , . . . ,oi , j }, with o1, j = oh

′

1, j , for any

h′ ≥ h. Given the occurrence o2, j in o
h′
i , j , it holds that o2, j .beдin > oh

′

1, j .end ≥ oh
1, j .end , since the set Occ

j
1
is sorted

according to the ending position of its occurrences; therefore, by replacing oh
′

1, j with o
h
1, j in o

h′
i , j , we obtain a set

ohi , j = {o1, j , . . . ,oi , j }, with o1, j = o
h
1, j , such that ∀i ′ < i,oi′, j .end < oi′+1, j .beдin . This contradicts the hypothesis

that the set ohi , j does not exist, so we conclude that there is no set oh
′

i , j for the occurrence oi , j ∈ Occ
j
i for any

h′ ≥ h. □

Lemma 5.7. If an occurrence oi , j ∈ Occ ji is erased at line 10 of MatchOcc procedure in the h-th iteration of
the loop at lines 4-13, then, for any h′ ≥ h, there is no set oh

′

i , j = {o1, j , . . . ,oi , j }, with o1, j = oh
′

1, j , such that
∀i ′ < i,oi′, j .end < oi′+1, j .beдin.

Proof. We prove the lemma by induction over the sets Occ j
2
, . . . ,Occ jk . We start with Occ j

2
. Suppose that an

occurrence o2, j ∈ Occ
j
2
is erased by MatchOcc procedure in the h-iteration of the loop at lines 4-13: then, it means

that o2, j .beдin ≤ pos , where pos = oh
1, j .end ; thus, it immediately follows that oh

2, j = {o
h
1, j , . . . ,o2, j } cannot exist.

Therefore, by Lemma 5.6, for any h′ ≥ h, no set oh
′

2, j = {o
h′
1, j , . . . ,o2, j } exists. We now look at the general case for

any occurrence oi , j in the setOcc
j
i erased in theh-th iteration of loop at lines 4-13. Our inductive hypothesis is that

for any element oi−1, j ∈ Occ
j
i−1 already erased, there is no set o

h
i−1, j = {o

h
1, j , . . . ,oi−1, j }. If occurrence oi , j is erased,

then it means that there is an occurrence o′i−1, j ∈ Occi−1 such that oi , j .beдin ≤ o′i−1, j .end ; therefore, no set ohi , j =

{oh
1, j , . . . ,o

′
i−1, j ,oi , j } exists. If we consider any oi−1, j already erased from Occi−1, then by inductive hypothesis

there is no set ohi−1, j = {o
h
1, j , . . . ,oi−1, j }, which implies that there is also no set ohi , j = {o

h
1, j , . . . ,oi−1, j ,oi , j }. If we

consider any oi−1, j , o′i−1, j still in Occ ji−1, then oi−1, j .end ≥ o′i−1, j .end , as the set Occ
j
i−1 is sorted in ascending

order according to the ending position of its occurrences; therefore, oi , j .beдin ≤ o′i−1, j .end ≤ oi−1, j .end , which

means that no set ohi , j = {o
h
1, j , . . . ,oi−1, j ,oi , j } exists. In conclusion, there is no element in oi−1, j ∈ Occi−1 such

that it is possible to construct a set ohi , j = {o
h
1, j , . . . ,oi−1, j ,oi , j }, therefore, this set does not exist for the occurrence

oi , j . By applying Lemma 5.6, we can generalize this result to any h′ > h. □

Lemma 5.7 implies that when an occurrence oi , j is erased in the h-th iteration of the loop at lines 4-13, then

oi , j cannot belong to any set oh
′

k , j for any h′ ≥ h. As an occurrence of p over document D j is identified by a

set ohk , j = {o1, j , . . . ,ok , j }, with o1, j = oh
1, j , of k occurrences from Occ j

1
, . . . ,Occ jk , this means that occurrence

oi , j cannot belong to any occurrence of p identified by a set oh
′

k , j for any h
′ ≥ h. Since all the occurrences of p

identified by sets oh
′

k , j , for h
′ < h, have been already found at iteration h of the aforementioned loop, then the

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:26 • N. Mainardi, A. Barenghi, G. Pelosi

Experiment transcript ← RealP,A(λ):
(D, stA) ← AD(1

λ), ([[D]],auxs ) ← P .Setup(D, 1λ)
∀i ∈ {1, . . . ,d}: List_qi ← ∅, List_Ri ← ∅

(qi , stA) ← Ai

(
[[D]], {List_ql}i−1l=1, {List_Rl}

i−1
l=1, stA

)
∀j ∈ {1, . . . ,w}:
[[qi ]]j ← P .Trapdoor(j,qi ,auxs , res1, . . . , resj−1)
([[resj ]], stA) ← A.Search(stA, [[qi ]]j , [[D]])
resj ← P .Retrieve([[resj ]],auxs )

List_qi ← ([[qi ]]1, . . . , [[qi ]]w )
List_Ri ← ([[res1]], . . . , [[resw ]])

transcript ←
{
[[D]], stA, {List_qi}di=1, {List_Ri}

d
i=1

}

Experiment transcript ← IdealA,S(λ):
(D, stA) ← AD(1

λ), ([[D]], stS) ← SD(LD, 1
λ)

∀i ∈ {1, . . . ,d}: List_qi ← ∅, List_Ri ← ∅

(qi , stA) ← Ai

(
[[D]], {List_ql }i−1l=1, {List_Rl }

i−1
l=1, stA

)
∀j ∈ {1, . . . ,w}:
([[qi ]]j , stS) ← Sqi (j, stS,LD,Lq1, . . . ,Lqi )

([[resj ]], stA) ← A.Search(stA, [[qi ]]j , [[D]])
List_qi ← ([[qi ]]1, . . . , [[qi ]]w )
List_Ri ← ([[res1]], . . . , [[resw ]])

transcript ←
{
[[D]], stA, {List_qi}di=1, {List_Ri}

d
i=1

}
Fig. 2. Security game experiments

occurrence oi , j cannot belong to any other occurrence of p except for the ones already found. Therefore, oi , j can
be safely erased from its set.

Furthermore, if all occurrences are erased in the h-th iteration of the loop at lines 4-13 from a set Occ ji ,

i ∈ {2, . . . ,k}, then all these occurrences by Lemma 5.7 cannot belong to any set oh
′

k , j for any h
′ ≥ h. Since, by

definition, a set ohk , j = {o1, j , . . . ,ok , j }, with o1, j = oh
1, j , identifying an occurrence of p over the document D j is

composed by k occurrences, one for each set Occ ji , then any set oh
′

k , j , for h
′ ≥ h, cannot be built. Since all the sets

oh
′

k , j , for h
′ < h, have been already built at the h-th iteration, there are no more occurrences of p to be found,

which means that the MatchOcc procedure can immediately stop at line 12 returning the set R j
p of occurrences of

p in document D j found so far.

We conclude this section by analyzing the computational and communication costs of the QueryPattern
procedure in Alg. 9, which mostly amount to the costs of the k queries for the well formed star-free patterns

α1, . . . ,αk . In case these patterns contain wildcard characters, the computational cost at server side is linear in the

length of the patternm and in the number oα =
∑k

i=1 oαi of occurrences of the patterns, while the communication

cost is linear in

∑k
i=1mαi ·oαi , that is the sum of the products between the lengths of each pattern and the

numbers of its occurrences; remarkably, in case all these patterns do not include wildcard characters, then the

computational cost at server side remains independent from the number of occurrences, while the communication

cost is only linear inm and oα , j .

6 SECURITY ANALYSIS
In the previous sections we observed how our PPSS protocol ensures the confidentiality of the remotely stored

string, of the searched substring, and of the results returned by each search query. Furthermore, it provide

indistinguishability of the search-pattern followed by multiple queries as well as the access-pattern privacy of

locating the occurrences of a given substring. In the following, adopting the framework introduced by Curtmola

in [9], we provide a formal definition of the information leakage coming from a PPSS and we formally specify the

adversarial model as well as the security guarantees provided by our PPSS protocol.

Definition 6.1 (Leakage of PPSS Protocol). Given a document collection D, a string q, and a PPSS protocol

P = (Setup, Query) its leakage L = (LD,Lq) is defined as follows. LD denotes the information learnt by the

adversary in the Setup phase, i.e., the information inferred by the adversary from the observation of the privacy-

preserving representation [[D]]. Lq denotes the information learnt by the adversary in thew iterations (rounds)

executed during the Query phase of the protocol, i.e., information inferred from the result of the Trapdoor
procedure and the execution of the Search procedure.

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:27

The security game stated in Def. 6.2 allows to prove that a semi-honest adversary does not learn anything

but the leakage L. To this end, this definition requires the existence of a simulator S, taking as inputs only LD
and Lq , which is able to generate a transcript of the PPSS protocol for the adversary that is computationally

indistinguishable from the one generated when a legitimate client interacts with the server during a real execution

of the protocol.

Definition 6.2 (Security Game). Given a PPSS protocol P with security parameter λ, d≥1 queries and the leakage
of P for all the queries L = (LD,Lq1, . . . ,Lqd ), an adversary A consisting of d + 1 probabilistic polynomial

time algorithmsA = (AD,A1, . . .Ad ), and a simulator S, which is also a tuple of d + 1 probabilistic polynomial

time algorithms S = (SD,Sq1, . . .Sqd ), the two probabilistic experiments RealP,A(λ) and IdealA,S(λ) shown in

Fig. 2 are considered. Denote as D(o) a probabilistic polynomial time algorithm taking as input a transcript of an

experiment o and returning a boolean value indicating if the transcript belongs to the real or ideal experiment.

The protocol P, with leakage L, is secure against every semi-honest probabilistic polynomial time adversary

A = (AD , . . .Ad ), if there exists a simulator S = (SD ,Sq1, . . .Sqd ) such that for every D:

Pr
(
D(o)=1|o←RealP,A(λ)

)
− Pr

(
D(o)=1|o←IdealA,S(λ)

)
≤ ϵ(λ), where ϵ(·) is a negligible function.

In the experiments shown in Fig. 2, D is chosen by the adversarial algorithmAD and the query qi is adaptively
chosen by the i-th adversarial algorithm Ai depending on the transcripts of the protocol in the previous queries.

All the adversarial algorithms share a state, denoted as stA , which is used to store possible information learnt by

the adversary throughout the experiment.

The RealP,A experiment represents an actual execution of the protocol, where the client receives the document

collection D and the d queries and it behaves as specified in the protocol; conversely, in the IdealA,S experiment,

the client is simulated by S, which however employs only the leakage information L = (LD , Lq1, . . . ,Lqd ).

In particular, the simulator SD constructs a privacy-preserving representation [[D]] by exploiting only the

knowledge of LD , while each simulator Sqi constructs the trapdoor for each round of the i-th query by exploiting

only the knowledge of the leakage LD , Lqj , j ∈ {1, . . . , i}.

Theorem 6.3. Given a document collectionD with z ≥ 1 documents {D1, . . . ,Dz } and d ≥ 1 substrings q1, . . . ,qd ,
our PPSS protocol is secure against a semi-honest adversary, as per Def. 6.2, with a leakage L = (LD ,Lq1, . . . ,Lqd ),
where LD = (

∑z
i=1(len(Di ) + 1),ω), with ω denoting the size of ciphertexts computed by the semantically secure

encryption scheme E employed to construct [[D]], and Lqi = (len(qi ),bi , |OD,qi |), 1≤i≤d , whereOD,qi is defined as
per Def. 4.1 and bi is the radix chosen to execute the Lipmaa PIR protocol.

Proof. See Appendix A. □

We remark that Theorem 6.3 guarantees search and access pattern privacy, as they are not enclosed in the

leakage L.

Theorem 6.3 applies also to the enhanced version of our PPSS protocol with the batched retrieval of occurrences:

indeed, it is possible to build a simulator S′, simulating this enhanced version in the IdealA,S′ experiment of

Def. 6.2, with a simple modification of the simulator S constructed in the proof reported in Appendix A. The

leakage L does not change in the enhanced version of the protocol: indeed, the number of elements sent back to

the client is close to the actual number of occurrences.

Privacy Guarantees of Queries with Wildcards. To analyze the information leakage of queries containing

wildcard characters, we assume the version of our PPSS protocol enhanced with batched retrieval procedure and

we distinguish two possible use case scenarios: in the first one, which is more unlikely, the adversary knows

that the client is performing a single query (e.g., an application scenario where each user is allowed to perform a

single query per day); in the second one, the client may perform an arbitrary number of queries.

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:28 • N. Mainardi, A. Barenghi, G. Pelosi

In the first scenario, the adversary can infer the number k of ∗wildcards in the queried pattern p = α1∗· · ·∗αk+1
and, for each of the k+1 well-formed star-free patterns α1, . . . ,αk+1 if there is at least a wildcard different from ∗

and &. The value k can be inferred by the number of private accesses to the encrypted array ⟨SA⟩ performed

during the execution of the query: indeed the QueryPattern procedure (line 4 in Alg. 9) runs k+1 times the

StarFreeQuery function in Alg. 8, which in turn accesses the array ⟨SA⟩ only once per run either by performing a

batched retrieval when the Query function in Alg. 6 is run (line 4 in Alg. 8) or by executing the BatchedRetrieval
function at line 13 in Alg. 8. Furthermore, if the client performs a private access to the encrypted array ⟨s⟩ (line 19
in Alg. 9) after the i-th access to ⟨SA⟩, 1≤i≤k+1, then the adversary learns that the i-th well-formed star-free

pattern αi found in p contains a wildcard character different from &. Once the adversary has reconstructed the

structure of p, for each well-formed star-free pattern with no wildcard character (except for &) she learns its

length and its number of occurrences; otherwise, for each well-formed star-free pattern αi with at least a wildcard

character, she learns the length of the longest string in Lαi (from the number of elements retrieved at line 19 in

Alg. 8) and the upper bound omin (see communication cost of StarFreeQuery procedure in Section 5) on the

number of its occurrences (from the number of elements retrieved at line 13 in Alg. 8).

Therefore, the adversary cannot learn the actual number of occurrences of a pattern unless it is a well-formed

star-free pattern with no wildcards other than &.

In the second scenario, where the client may perform an arbitrary number of queries, the adversary can no

longer reconstruct the number of ∗ wildcards: indeed, the adversary only observes a set of queries for well-

formed star-free patterns, but it cannot determine which of them are portions of the same well-formed pattern.

Nonetheless, the adversary can still infer, for each of the observed queries, if the queried well-formed star-free

pattern p contains at least a wildcard character other than ∗ or & by verifying if the client retrieves any element

from the encrypted array ⟨s⟩. It is worth noting that this information leakage may be not accurate for the

adversary: indeed, although not specified in our PPSS protocol, in some application scenarios the client, once

determined the positions of an occurrence in a document, may need to download the portions of the document

corresponding to such an occurrence, hereby privately accessing via PIR queries the encrypted array ⟨s⟩ too.
Similarly to the previous scenario, in case the adversary determines that the queried well-formed star-free pattern

p contains at least a wildcard character other than ∗ or &, she learns the length of the longest string in Lαi and the
upper bound omin on the number of its occurrences; otherwise, she learns the length of p and the number of its

occurrences. Nonetheless, since in this scenario the client cannot know if p is a portion of a bigger well-formed

pattern or not, the adversary can never know with certainty both the length and the number of occurrences of

the well-formed pattern.

The leakage of the structure of the well-formed pattern in both scenarios can be prevented with the following

two modifications: the first one consists of conceiving the encrypted arrays ⟨C⟩, ⟨SA⟩ and ⟨s⟩ in [[D]] as a single
dataset, thus any PIR query will be performed over all these three arrays; the second modification requires that

PIR queries always retrieve elements in batches of constant size (otherwise the information concerning which

array among ⟨C⟩, ⟨SA⟩ and ⟨s⟩ has been accessed would be leaked). Nonetheless, these two modifications would

introduce a significant performance overhead to the PPSS protocol, as the performance benefits of implementing

a batching retrieval are lost and the penalty due to the the PIR access of a much larger dataset must be kept into

account. Since we deem the leakage related to the execution of queries with wildcards acceptable in most of the

practical use case scenarios, we recommend the described countermeasure only for specific use cases where the

information leakage about the structure of queries with well-formed pattern is actually a sensitive data.

7 EXPERIMENTAL EVALUATION
We validated our PPSS protocol implementing a client-server architecture and running it on a dual Intel Xeon

CPU E5-2620 clocked at 3 GHz, endowed with 128 GiB DDR4-2133, and 64-bit Gentoo Linux17.0 OS. Our

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:29

implementation provides a cryptographic security level of at least λ = 80 bits, relying on the multi-precision

integer arithmetic GMP library [17] and a proper parametrization of the generalized Pailler algorithms provided

by the libhcs library [39], to implement the PIR-related cryptographic operations. We relied on the OpenSSL ver.

1.0.2r [22] for all the symmetric cryptographic operations: the AES-128 CounTeR (CTR) mode primitive for the

cell-wise encryption/decryption of [[D]]=(⟨C⟩, ⟨SA⟩); the CMAC primitive based on the AES-128 Cipher Block

Chaining (CBC) mode of operation to compute the Message Authentication Code (MAC) associated with each

entry in [[D]]; the AES-128 primitive with the Electronic Code Book (ECB) mode of operation to implement a

PRF yielding an entry-specific secret key employed for the MAC computation when fed with a master secret key

and the position of entry at hand. The implementation of our PPSS protocol (except for the batched retrieval

optimization and the queries with wildcard characters) is publicly available online [26], together with detailed

instructions on how to reproduce the experimental campaign described in the following, as well as the data files

employed for assessing functionalities and performance of the provided implementation.

We chose as our case study a genomic dataset in the widely employed FASTA format [7], which employs an

alphabet of five characters to represent a DNA sequence, i.e.: Σ = {C,G,A,T ,N }. Specifically, we considered a

document containing approximately 40 · 106 nucleotides (characters) belonging to the 21-th human chromosome

selected from the Ensembl publicly available data [15].

In the experiments, we considered documents with variable sizes replicating and truncating the mentioned

dataset appropriately. We considered substring searches with a substring q havingm = 6 characters, as it is

the size of many restriction enzyme sites (transcribed as m-character strings), that are commonly employed

in DNA-based paternity tests. Indeed, the test employs the distances between the occurrences of one of the

mentioned substrings in the DNA fragments of two hosts to identify if the hosts are related [2].

In the actual implementation employed for the experimental campaign, we introduced some optimizations

which allowed us to reduce the number of entries in the arrays ⟨C⟩ and ⟨SA⟩. First of all, we recall that ⟨C⟩ is
the cell-wise encryption of the array C , which is obtained, as described in lines 4 – 7 of Algorithm 5, from the

matrix representation,M , of the BWT, L, of the document. Specifically, as any entryM[c][i], with c ∈ Σ ∪ {$}, i ∈
{1, . . . ,n + 1} stores the number of occurrences of character c in the subarray (L[1], . . . , L[i]), the array C has

(|Σ| + 1) · (n + 1) entries storing O(logn) bits each. To reduce the memory footprint of this array, we derived an

hybrid representation betweenM and the BWT L: given a parameter R, referred to as sample period, we constructed
an array CR with

⌈n+1
R

⌉
entries, where CR [j] is a tuple with two elements, the first one beingM[:][j · R], that is

the j · R-th column ofM , and the second one being the substring of the BWT L corresponding to characters at

positions {j ·R, . . . , j ·R+R−1} (i.e., L[j ·R, . . . , j ·R+R−1]). In this way, the arrayCR has

⌈n+1
R

⌉
entries requiring

(only)O(|Σ| · log(n)+R · log(|Σ|) bits. The substring search procedure outlined in Alg. 1 was modified accordingly

to make use ofCR in place ofM . Specifically, each access toM[c][i], c ∈ Σ ∪ {$}, i ∈ {1, . . . ,n + 1}, is replaced by

retrieving M[c][⌊ iR ⌋ · R] from the ⌊ iR ⌋-th entry of CR and adding it to the number of occurrences of c among

the first i mod R characters of the substring of the BWT L found in the ⌊ iR ⌋-th entry of CR . We chose a sample

period R which allows to encrypt each entry of CR to an AES-128 CTR ciphertext within approximately log(N )
bits, where N is the modulus employed in the LFAHE Paillier scheme. Furthermore, to reduce the number of

entries of the array ⟨SA⟩, we encrypted in a single AES-128 CTR ciphertext of approximately log(N ) bits as many

entries as possible from the array SA. In this way, we reduced the original number of entries of the encrypted

arrays ⟨C⟩ and ⟨SA⟩ by significant constant factors (resp. 1200 and 28), obtaining a comparable speed-up in the

Search procedure.

In the first bunch of tests, we profiled the performance of the Query procedure. We evaluated separately the

two phases of the Query procedure, labeled as Qnum and Qocc in Alg. 6, that compute the number of occurrences

and the set of positions of the leading character of the occurrences of the substring, respectively. The performance

figures related to the second phase refers to the retrieval of a single occurrence, as the costs of retrieving all of

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:30 • N. Mainardi, A. Barenghi, G. Pelosi

0 20 40

0

20

40

Radix b

C
l
i
e
n
t
C
o
s
t
(
s
) Qnum

Qocc

0 20 40

0

5

10

Radix b

S
e
r
v
e
r
C
o
s
t
(
m
i
n
)

Qnum
Qocc

0 20 40

10

20

30

40

Radix b

C
o
m
m
.
C
o
s
t
(
k
i
B
)

Qnum
Qocc

Fig. 3. Performance of our PPSS protocol as a function of the radix b employed in the PIR algorithms. Private search of
q = CTGCAG in a genome with 500k nucleotides

0 20 40

0

10

20

Genome size (MiB)

C
l
i
e
n
t
C
o
s
t
(
s
)

Qnum b=20 Qnum bn opti

Qocc b=20 Qocc bo opti

Batched Qocc b=17

0 20 40

10
−2

10
0

10
2

Genome size (MiB)

S
e
r
v
e
r
C
o
s
t
(
m
i
n
)

Qnum 1 core Qnum bn cores

Qocc 1 core Qocc bo cores

Batched Qocc 17 cores

0 20 40

0

20

40

Genome size (MiB)

C
o
m
m
.
C
o
s
t
(
k
i
B
)

Qnum b=20 Qnum bn opti

Qocc b=20 Qocc bo opti

Batched Qocc b=17

Fig. 4. Performance of our PPSS protocol as a function of the genomic document size to find one occurrence of the substring
q = CTGCAG . Considering each document size in increasing order, the optimal values of radixes bn and bo employed during
the experiments are {13, 17, 21, 26, 14, 17, 20, 21} and {27, 14, 17, 20, 24, 28, 17, 18}, respectively. In case of batched retrieval of
occurrences, the optimal radix b employed is always 17. The costs for the batched retrieval are divided by the number of
retrieved occurrences, which amounts to {248, 389, 926, 1501, 2368, 4929, 11138, 18168}, respectively.

them is proportional to their number. We remark that the communication costs reported in our results refer to a

single round of communication. In Fig. 3 a remotely stored string with length equal to 500 · 103 characters is

considered, and the client, server and communication costs are shown as a function of the radix b employed in the

Lipmaa’s PIR algorithm. As expected, increasing values of b allows to significantly decrease the computational

cost on server side; conversely, the client and communication costs, which include a factor O(b log2b (n)) (see
Section 3.3), increase with the values of b, save for small values of b. The results suggest that the optimal value

of b must be found considering the overall response time of a query, and should be differentiated between the

phases Qnum and Qocc of the Query procedure as bn and bo , respectively.
In the next batch of tests, we considered a single-core implementation where we employed the same value

b = 20 for genomes of increasing size in order to observe how the performances are affected only by the size of

the document collection. In addition, we consider also a multi-core implementation of the PIR-Search procedure
of the Lipmaa’s PIR protocol. Specifically, we adopted a simple parallelization strategy which employs b cores

to simultaneously compute all the b recursive calls of Alg. 7. For these tests, we employed the optimal values

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:31

bn and bo for each document size. The results of these tests are shown in Fig. 4. Regarding the server cost, we

observe a linear trend in both the single-core (continuous lines in Fig. 4) and the multi-core implementations

(dashed lines in Fig. 4); nevertheless, the multi-core implementation is at least one order of magnitude faster than

the single-core, achieving much more practical performances (i.e., approximately 5 minutes to search for the

substring q = CTGCAG in a 40 · 106 characters document containing the whole chromosome).

The client and communication costs show the expected poly-logarithmic trend which allows to exchange

kilobytes of data to search for the occurrences of q = CTGCAG in the whole chromosome. Furthermore, in Fig. 4

the dashed lines on plots reporting the client and communication costs show the benefits of employing specific

values bn and bo tailored for the size of the document. Concerning the client computational cost, during our

experiments we also measured the time required by the client to verify the integrity of the entries retrieved from

the outsourced arrays. As the size of each of the said entries is always O(log(N )) bits, the computational effort

to compute the MAC tag associated with a single entry is always the same regardless of which one among the

three outsourced arrays composing the full-text index at server side is accessed. Our experiments revealed that

such an effort is negligible w.r.t. the execution time of the PIR-Retrieve operation. Indeed, at client side, the
computational cost of the entire process of verifying the integrity of an entry retrieved from the server amounts

to 3 µs, while the one of a single run of the PIR-Retrieve procedure fetching such an entry from the server

takes 930ms. We remark that the latter cost is averaged over dataset sizes ranging from 0.5 KiB to 40 MiB, as it is

dependent from the size of the accessed array.

We also evaluated our enhanced protocol with the batched retrieval method, which is able to fetch all the

occurrences in a single round of communication. To fairly compare this approach with the non batched one,

we report in Fig. 4 the amortized client, server and communication costs, i.e.: the costs referring to the batched

retrieval solution are divided by the total number of occurrences oq . The results clearly outline the benefits of the

batched approach, as all costs in the non-batched version are lowered by a factor roughly proportional to the

number of occurrences. Although this result is expected at server side, as its computational cost with the batched

approach is independent from oq , the computational and bandwidth-savings for the client and communication

costs, respectively, are definitely more interesting. Indeed, it is worth noting that in our non-batched protocol the

number of PIR trapdoors computed and sent by the client and the number of PIR replies received and decrypted

by the client are both proportional to oq , while in our enhanced protocol the size of the single PIR reply is the

only component depending from oq . Thus, considering that both the size of the PIR trapdoor and the client cost

to compute it are asymptotically higher than the ones referring to the PIR reply, the reasons for the observed

performance benefits become clear. We remark that, for the client cost, the non-amortized cost to retrieve all the

oq occurrences is even smaller than the cost to retrieve one occurrence in the non-batched method, because the

client builds a PIR trapdoor for a dataset with
n
oq

elements instead of n. Finally, since the client can retrieve in a

single round all the oq occurrences found in the Qnum phase of the Query algorithm, the performance benefits

exhibited by the Qocc phase of the enhanced protocol increases proportionally to oq . Indeed, in Fig. 4, the trend of

the amortized costs is roughly constant or slightly decreasing as oq increases as a function of the document size.

Willing to compare the execution time of our protocol with the one of the BWT-based substring-search

procedure outlined in Alg. 1 (that features no security guarantees), we focused on querying a single occurrence

of the substring q = CTGCAG in the outsourced document. The experiment showed an execution time for Alg. 1

equal to a few microseconds. We remark that querying for a single occurrence of q makes the computational

complexity of Algorithm 1 unrelated to the size of the outsourced document, while the PIR-based Query procedure
outlined in Alg. 6 has a computational complexity depending linearly on the size of the outsourced document.

In Fig. 5, we also report the execution time for genomes of increasing size of the Setup procedure in Alg. 5,

which builds the privacy-preserving representation [[D]] of the dataset. In this test we considered also the

genomic data corresponding to the 1-st human chromosome, which is much bigger than the 21-th one employed

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:32 • N. Mainardi, A. Barenghi, G. Pelosi

0 100 200

0

50

100

Genome Size (MiB)

S
e
t
u
p
T
i
m
e
(
s
)

Fig. 5. Execution time of the Setup procedure for
genomes of increasing size. The blue line shows the fit
between the experimental data and the linear model
given by SetupTime = 0.4369 ∗GenomeSize − 2.2

0 5 10 15

0

1

2

# Queries

M
e
m
o
r
y
C
o
n
s
u
m
p
t
i
o
n
(
G
B
)

32M 8M
2M 500k

Fig. 6. Memory consumption of our PPSS protocol when
multiple simultaneous queries are performed. Each line
represent a genome with a different size

in all other tests. The experimental results confirm the expected linear trend and they show practical performance

for the Setup procedure: indeed, building the privacy-preserving representation of the 1-st human chromosome,

which is as big as 238 MB, requires only 103 seconds.

Lastly, willing to verify the limited memory consumption when multiple-queries are simultaneously performed,

we run each query in a separate thread, measuring the memory consumption of the process, as exposed by

the process record in Linux’s proc virtual filesystem. Fig. 6 shows that as the number of simultaneous queries

is increased, the memory consumption increases keeping (roughly) the same rate for the four dataset sizes

considered. These results agree with the asymptotic spatial evaluations reported at the end of Section 4, where

substantial storage savings w.r.t. replicating the whole data structure per-query are discussed.

Evaluation of Queries with Wildcards
We also implemented the StarFreeQuery and the QueryPattern procedures, with the aim of experimentally

validating their correctness as well as evaluating their performance. In our implementation of the StarFreeQuery
procedure, we relied on the Perl Compatible Regular Expressions (PCRE) library [19] (ver. 10.35) for the

MatchShortestPrefix procedure (line 21 in Alg. 8), which matches the portions of the string s privately retrieved
from the outsourced encrypted array ⟨s⟩ (line 19). In particular, we employ the option PCRE_UNGREEDY to find the
shortest match of a pattern instead of the longest one, which is the default behavior of PCRE library. Similarly

to the construction of the outsourced suffix array, we packed in a single ciphertext of O(log(N )) bits as many

characters as possible from s , hence reducing as much as possible the number of entries of the array ⟨s⟩. In our

evaluation, we employed a parallel implementation of the PIR-Search procedures on server side.

In the evaluation of StarFreeQuery procedure, we considered the well-formed star-free pattern

p = ?(GC |A|)GCCTATCG(G |TAC |??)([!CT ]?|)TA?(TG |CGT |TA|[ACG][ATG])GTC(|?)

which is decomposed according to Lemma 5.5 in 3 wildcard-free subtrings (highlighted in red) and 5 substrings

containing wildcards (highlighted in blue). Such pattern allows to fully validate the capability of our privacy-

preserving StarFreeQuery procedure as it includes all the legit wildcards defined in our format, while reasonably

representing the type of well-formed star-free patterns that may be matched in our PPSS protocol. Indeed, this

pattern matches substrings with length ranging from 18 to 26 characters, with the longest matches including

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:33

0 10 20 30 40

0

0.5

1

Genome size (MiB)

S
e
r
v
e
r
C
o
s
t
(
m
i
n
)

0 10 20 30 40

0

1

2

Genome size (MiB)

C
l
i
e
n
t
C
o
s
t
(
s
)

QueryNum procedure

Batched Occ Retrieval

Batched Text Retrieval

(a) Unitary costs

0 10 20 30 40

0

10

20

Genome size (MiB)

S
e
r
v
e
r
C
o
s
t
(
m
i
n
)

0 10 20 30 40

0

20

40

Genome size (MiB)

C
l
i
e
n
t
C
o
s
t
(
s
)

QueryNum procedure

Batched Occ Retrieval

Batched Text Retrieval

(b) Overall costs

Fig. 7. Computational costs of a multi-core implementation of StarFreeQuery procedure of our PPSS protocol as a function
of the genome size. The tested query retrieves all the occurrences of the well-formed star-free pattern
p = ?(GC |A|)GCCTATCG(G |TAC |??)([!CT ]?|)TA?(TG |CGT |TA|[ACG][ATG])GTC(|?)

50% of wildcard characters. The issuing of queries with patterns that matches more than 50% of the characters

through wildcards is not representative of the usual application scenarios.

The computational costs of the StarFreeQuery procedure for different dataset sizes are reported in Fig. 7. In

our evaluation, we split the computational and communication costs according to the three most computationally

intensive operations of the StarFreeQuery procedure: the computation of the number of occurrences of each of

the k wildcard-free substrings of the searched well-formed star-free pattern p, performed with the k executions

of the QueryNum procedure (line 10 in Alg. 8); the batched retrieval of the omin occurrences of the wildcard-free

substring with the least number of occurrences (line 13), labeled as Batched Occ Retrieval in Fig. 7; the batched

retrieval of the portions of the string s where the occurrences of p can be found (line 19), labeled as Batched
Text Retrieval in Fig. 7. Since the costs of the QueryNum procedure depend on the number of characters of the k
wildcard-free substrings of the pattern p, and the costs of the Batched Text Retrieval depend on the number omin
of portions of s that must be retrieved, we report in Fig. 7(a) also the unitary costs for both these operations;

conversely, since the server cost of the Batched Occ Retrieval is independent from the omin occurrences sent to

the client, we do not report its unitary cost. We observe that the costs of the Batched Text Retrieval are more than

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



000:34 • N. Mainardi, A. Barenghi, G. Pelosi

0 10 20 30 40

20

30

40

50

Genome size (MiB)

C
o
m
m
.
C
o
s
t
(
k
i
B
)

QueryNum procedure

Batched Occ Retrieval

Batched Text Retrieval

Fig. 8. Communication cost of the StarFreeQuery procedure to retrieve all the occurrences of the well-formed star-free
pattern p = ?(GC |A|)GCCTATCG(G |TAC |??)([!CT ]?|)TA?(TG |CGT |TA|[ACG][ATG])GTC(|?)

halved w.r.t. the costs of the QueryNum procedure, which is mostly due to the smaller size of the outsourced array

⟨s⟩ w.r.t. the encrypted array ⟨C⟩, in turn leading to faster PIR queries. All the unitary costs show the expected

linear and poly-logarithmic trends in server and client costs, respectively.

The overall computational costs of the privacy-preserving query for the well-formed star-free pattern p are

reported in Fig. 7(b). From the experimental data, we observe that the performance mostly depend on the costs for

Batched Text Retrieval, which grow linearly with the size of the dataset. In case of the client cost, the linear trend

is due to the increasing number omin of portions of s that must be retrieved: indeed, the occurrences omin of the

substring GCCTATCG (i.e., the wildcard-free one with the least number of occurrences) vary from 1 to 41 with an

increasing dataset size. In case of the server cost, the linear trend is given by the growth of both the unitary cost

and the number of retrievals, which grow linearly with the dataset size and omin , respectively. The costs of the

QueryNum and Batched Occ Retrieval are less affected by the increasing number of occurrences, showing similar

trends to the corresponding operations performed in the evaluation of the Query procedure (Fig. 4).
Considering the entire chromosome (i.e., the biggest among the tested datasets), we observe that the overall

response time of our StarFreeQuery procedure for the well-formed star-free pattern p, given by the sum of the

three components reported in Fig. 7(b), is about 35 minutes, which amounts to approximately four times the cost

of the Query procedure for wildcard-free substrings. This performance gap is mostly due to the dependence of

the server cost on the number omin , which is a non tight upper bound on the number of matches of p, while we

recall that the server cost of the Query procedure, when the batched retrieval method is employed, is independent

from the number of occurrences of the queried string. Nonetheless, we deem the observed performance gap

as acceptable, given the unprecedented expressiveness achieved by our privacy-preserving pattern matching

queries.

In addition, although not reported in the client cost of our pattern matching query, we experimentally verified

that identifying the occurrences of p in the portions of the string s fetched from the outsourced array ⟨s⟩, which
corresponds to lines 20– 24 in Alg.8, has a negligible impact on client cost: indeed, this operation requires 180 µs
averaged over all the dataset sizes reported in Fig. 7, while the overall client cost is on average about 30 seconds,

hereby showing 5 order of magnitudes of difference.

Concerning the communication cost of our query, reported in Fig. 8, we observe that it is roughly equivalent

to the cost reported for the Query procedure in Fig. 4. Indeed, also for the StarFreeQuery procedure the

communication cost is mostly due to the batched retrieval of the occurrences, as it fetches in a single round an

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:35

amount of data proportional to the number of occurrences omin . Despite the non smooth behavior, which is given

by the different number of recursive levels obtained by employing an optimal value of the radix b in the Lipmaa’s

PIR protocol, overall the communication cost still exhibits the expected polylogarithmic trend, showing that

our PPSS protocol allows to increase the expressiveness of the queries while retaining approximately the same

bandwidth.

Finally, we did not thoroughly evaluate the overall performance of the QueryPattern procedure, as it is rather

obvious from its description in Alg. 9 that the computational and communication costs can be easily derived

from the corresponding costs of the k StarFreeQuery procedures invoked at line 4. Conversely, we focused our

evaluation on the estimation of the impact on the client cost of the QueryPattern procedure of the MatchOcc
procedure invoked at line 8 in Alg. 9, which computes the occurrences of the well-formed pattern p = α1 ∗ · · · ∗αk
from the occurrences of the k well-formed star-free patterns returned by the k StarFreeQuery procedures. In
our evaluation, we employed the well-formed pattern p = GCAATC ∗ CTGAC ∗ TGAC, as we considered it as a

good representative of the well-formed patterns that may be searched by users of our PPSS protocol; indeed,

since in general the ∗ wildcard does not significantly restrict the number of matches of the well-formed star-free

patterns composing the matched well-formed pattern, we expect that users in our PPSS protocol would issue

queries for patterns composed by infrequent well-formed star-free patterns, in order to avoid an unnecessary

blowup of the number of matched occurrences. Our evaluation revealed that the impact of MatchOcc procedure is
limited: indeed, it requires only 3 s to compute the 7459 occurrences of the pattern p over the entire chromosome,

which is the biggest among the tested datasets, from the occurrences of the patterns GCAATC, CTGAC, TGA,
as opposed to the 71.5 s of overall client cost of the three StarFreeQuery procedures invoked for the patterns

GCAATC, CTGAC, TGA.

8 CONCLUDING REMARKS
We presented the first privacy-preserving substring search protocol with proven guarantees of search and access

pattern privacy that enables the simultaneous execution of queries from multiple users without the need of the

data owner being online, and exhibiting a sub-linear (poly-logarithmic) communication cost per user. We further

extended the proposed PPSS protocol with the capability of querying strings containing wildcard characters. Our

experimental validation with a case study on genomic data shows practical execution times and communication

costs, and highlights the possibility of achieving significant benefits from the proposed batched retrieval approach.

ACKNOWLEDGMENTS
This work was supported in part by the EU Commission grant: “WorkingAge” (H2020 RIA) Grant agreement no.

826232.

REFERENCES
[1] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. 2018. PIR with Compressed Queries and Amortized Query Processing.

In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA. IEEE Computer

Society, 962–979. https://doi.org/10.1109/SP.2018.00062

[2] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. 2011. Countering GATTACA: efficient and secure

testing of fully-sequenced human genomes. In Proc. of the 18th ACM Conf. on Computer and Communications Security, CCS 2011, Chicago,
Illinois, USA, October 17-21, 2011, Y. Chen, G. Danezis, and V. Shmatikov (Eds.). ACM, 691–702. https://doi.org/10.1145/2046707.2046785

[3] Christoph Bösch, Pieter H. Hartel, Willem Jonker, and Andreas Peter. 2014. A Survey of Provably Secure Searchable Encryption. ACM
Comput. Surv. 47, 2 (2014), 18:1–18:51. https://doi.org/10.1145/2636328

[4] Michael Burrows and David Wheeler. 1994. A block-sorting lossless data compression algorithm. Technical Report. Digital Equipment

Corporation. 18 pages. http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf

[5] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-Abuse Attacks Against Searchable Encryption. In Proc. of
the 22nd ACM SIGSAC Conf. on Computer and Communications Security, Denver, CO, USA, October 12-16, 2015, Indrajit Ray, Ninghui Li,

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.

https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1145/2046707.2046785
https://doi.org/10.1145/2636328
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf


000:36 • N. Mainardi, A. Barenghi, G. Pelosi

and Christopher Kruegel (Eds.). ACM, 668–679. https://doi.org/10.1145/2810103.2813700

[6] Melissa Chase and Emily Shen. 2015. Substring-Searchable Symmetric Encryption. PoPETs 2015, 2 (2015), 263–281. http://www.

degruyter.com/view/j/popets.2015.2015.issue-2/popets-2015-0014/popets-2015-0014.xml

[7] P.J. Cock, C.J. Fields, N. Goto, M.L. Heuer, and P.M. Rice. 2010. The Sanger FASTQ file format for sequences with quality scores, and the

Solexa/Illumina FASTQ variants. Nucleic Acids Research 38, 6 (2010), 1767–1771. https://doi.org/10.1093/nar/gkp1137

[8] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology ePrint Archive 2016 (2016), 86.
[9] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Searchable symmetric encryption: improved definitions and

efficient constructions. In Proc. of the 13th ACM Conf. on Computer and Communications Security, CCS 2006, Alexandria, VA, USA, October
30 - November 3, 2006, A. Juels, R. N. Wright, and S. De Capitani di Vimercati (Eds.). ACM, 79–88. https://doi.org/10.1145/1180405.1180417

[10] Ivan Damgård and Mads Jurik. 2001. A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key

System. In Public Key Cryptography, 4th Intl. Workshop on Practice and Theory in Public Key Cryptography, PKC 2001, Cheju Island, Korea,
February 13-15, 2001, Proc. (LNCS), Kwangjo Kim (Ed.), Vol. 1992. Springer, 119–136. https://doi.org/10.1007/3-540-44586-2_9

[11] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel-Catalin Rosu, and Michael Steiner. 2015. Rich Queries on Encrypted

Data: Beyond Exact Matches. In Computer Security - ESORICS 2015 - 20th European Symposium on Research in Computer Security, Vienna,
Austria, September 21-25, 2015, Proceedings, Part II (Lecture Notes in Computer Science), Günther Pernul, Peter Y. A. Ryan, and Edgar R.

Weippl (Eds.), Vol. 9327. Springer, 123–145. https://doi.org/10.1007/978-3-319-24177-7_7

[12] Sebastian Faust, Carmit Hazay, and Daniele Venturi. 2018. Outsourced pattern matching. Int. J. Inf. Sec. 17, 3 (2018), 327–346.

https://doi.org/10.1007/s10207-017-0374-0

[13] Paolo Ferragina and Giovanni Manzini. 2005. Indexing compressed text. J. ACM 52, 4 (2005), 552–581. https://doi.org/10.1145/1082036.

1082039

[14] Paolo Ferragina and Rossano Venturini. 2010. The compressed permuterm index. ACM Trans. Algorithms 7, 1 (2010), 10:1–10:21.

https://doi.org/10.1145/1868237.1868248

[15] Paul Flicek et. al. 2000. Ensembl Genome Browser. www.ensembl.org/.

[16] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In Proc. of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA,May 31 - June 2, 2009, MichaelMitzenmacher (Ed.). ACM, 169–178. https://doi.org/10.1145/1536414.1536440

[17] Torbjörn Granlund and the GMP development team. 2012. GNU MP: The GNU Multiple Precision Arithmetic Library. http://gmplib.org/.

[18] Florian Hahn, Nicolas Loza, and Florian Kerschbaum. 2018. Practical and Secure Substring Search. In Proc. of the 2018 Intl. Conf. on
Management of Data, SIGMOD Conf. 2018, Houston, TX, USA, June 10-15, 2018, Gautam Das, Christopher M. Jermaine, and Philip A.

Bernstein (Eds.). ACM, 163–176. https://doi.org/10.1145/3183713.3183754

[19] Philip Hazel. 2015. PCRE - Perl Compatible Regular Expressions. https://www.pcre.org.

[20] Thang Hoang, Attila A. Yavuz, F. Betül Durak, and Jorge Guajardo. 2019. A multi-server oblivious dynamic searchable encryption

framework. J. Comput. Secur. 27, 6 (2019), 649–676. https://doi.org/10.3233/JCS-191300

[21] Yu Ishimaki, Hiroki Imabayashi, and Hayato Yamana. 2017. Private Substring Search on Homomorphically Encrypted Data. In

2017 IEEE Intl. Conf. on Smart Computing, SMARTCOMP 2017, Hong Kong, China, May 29-31, 2017. IEEE Computer Society, 1–6.

https://doi.org/10.1109/SMARTCOMP.2017.7947038

[22] Ben Kaduk et. al. 2015. OpenSSL – Cryptography and SSL/TLS Toolkit. https://www.openssl.org.

[23] Iraklis Leontiadis and Ming Li. 2018. Storage Efficient Substring Searchable Symmetric Encryption. In Proc. of the 6th Intl. Workshop on
Security in Cloud Computing, SCC@AsiaCCS 2018, Incheon, Republic of Korea, June 04-08, 2018, Aziz Mohaisen and Qian Wang (Eds.).

ACM, 3–13. https://doi.org/10.1145/3201595.3201598

[24] Kaitai Liang, Xinyi Huang, Fuchun Guo, and Joseph K. Liu. 2016. Privacy-Preserving and Regular Language Search Over Encrypted

Cloud Data. IEEE Trans. Inf. Forensics Secur. 11, 10 (2016), 2365–2376. https://doi.org/10.1109/TIFS.2016.2581316

[25] Helger Lipmaa. 2005. An Oblivious Transfer Protocol with Log-Squared Communication. In Information Security, 8th Intl. Conf., ISC
2005, Singapore, September 20-23, 2005, Proc. (LNCS), J. Zhou, J. López, R. H. Deng, and F. Bao (Eds.), Vol. 3650. Springer, 314–328.

https://doi.org/10.1007/11556992_23

[26] Nicholas Mainardi. 2019. Privacy Preserving Substring Search Protocol with Polylogarithmic Communication Cost – Software implentation.
https://dx.doi.org/10.5281/zenodo.3384814.

[27] Nicholas Mainardi, Alessandro Barenghi, and Gerardo Pelosi. 2019. Privacy preserving substring search protocol with polylogarithmic

communication cost. In Proceedings of the 35th Annual Computer Security Applications Conference, ACSAC 2019, San Juan, PR, USA,
December 09-13, 2019, David Balenson (Ed.). ACM, 297–312. https://doi.org/10.1145/3359789.3359842

[28] Nicholas Mainardi, Davide Sampietro, Alessandro Barenghi, and Gerardo Pelosi. 2020. Efficient Oblivious Substring Search via

Architectural Support. In ACSAC ’20: Annual Computer Security Applications Conference, Virtual Event / Austin, TX, USA, 7-11 December,
2020. ACM, 526–541. https://doi.org/10.1145/3427228.3427296

[29] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian. 2016. XPIR: Private Information Retrieval for Everyone.

PoPETs 2016, 2 (2016). https://doi.org/10.1515/popets-2016-0010

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.

https://doi.org/10.1145/2810103.2813700
http://www.degruyter.com/view/j/popets.2015.2015.issue-2/popets-2015-0014/popets-2015-0014.xml
http://www.degruyter.com/view/j/popets.2015.2015.issue-2/popets-2015-0014/popets-2015-0014.xml
https://doi.org/10.1093/nar/gkp1137
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-319-24177-7_7
https://doi.org/10.1007/s10207-017-0374-0
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1145/1868237.1868248
www.ensembl.org/
https://doi.org/10.1145/1536414.1536440
http://gmplib.org/
https://doi.org/10.1145/3183713.3183754
https://www.pcre.org
https://doi.org/10.3233/JCS-191300
https://doi.org/10.1109/SMARTCOMP.2017.7947038
https://www.openssl.org
https://doi.org/10.1145/3201595.3201598
https://doi.org/10.1109/TIFS.2016.2581316
https://doi.org/10.1007/11556992_23
https://dx.doi.org/10.5281/zenodo.3384814
https://doi.org/10.1145/3359789.3359842
https://doi.org/10.1145/3427228.3427296
https://doi.org/10.1515/popets-2016-0010


Privacy-aware character pattern matching over outsourced encrypted data • 000:37

[30] Tarik Moataz and Erik-Oliver Blass. 2015. Oblivious Substring Search with Updates. IACR Cryptology ePrint Archive 2015 (2015), 722.
http://eprint.iacr.org/2015/722

[31] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Advances in Cryptology - EUROCRYPT
’99, Intl. Conf. on the Theory and Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding (LNCS),
Jacques Stern (Ed.), Vol. 1592. Springer, 223–238. https://doi.org/10.1007/3-540-48910-X_16

[32] Shiyue Qin, Fucai Zhou, Zongye Zhang, and Zifeng Xu. 2020. Privacy-Preserving Substring Search on Multi-Source Encrypted Gene

Data. IEEE Access 8 (2020), 50472–50484. https://doi.org/10.1109/ACCESS.2020.2980375

[33] Cédric Van Rompay, Refik Molva, and Melek Önen. 2017. A Leakage-Abuse Attack Against Multi-User Searchable Encryption. PoPETs
2017, 3 (2017), 168. https://doi.org/10.1515/popets-2017-0034

[34] Kana Shimizu, Koji Nuida, and Gunnar Rätsch. 2016. Efficient privacy-preserving string search and an application in genomics.

Bioinformatics 32, 11 (2016). https://doi.org/10.1093/bioinformatics/btw050

[35] Dawn Xiaodong Song, David A. Wagner, and Adrian Perrig. 2000. Practical Techniques for Searches on Encrypted Data. In 2000 IEEE
Symposium on Security and Privacy, Berkeley, California, USA, May 14-17, 2000. IEEE Computer Society, 44–55. https://doi.org/10.1109/

SECPRI.2000.848445

[36] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an

extremely simple oblivious RAM protocol. In 2013 ACM SIGSAC Conf. on Computer and Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM, 299–310. https://doi.org/10.1145/2508859.2516660

[37] Julien P. Stern. 1998. A New Efficient All-Or-Nothing Disclosure of Secrets Protocol. In Advances in Cryptology - ASIACRYPT ’98,
International Conference on the Theory and Applications of Cryptology and Information Security, Beijing, China, October 18-22, 1998,
Proceedings (LNCS), Kazuo Ohta and Dingyi Pei (Eds.), Vol. 1514. Springer, 357–371. https://doi.org/10.1007/3-540-49649-1_28

[38] Mikhail Strizhov, Zachary Osman, and Indrajit Ray. 2016. Substring Position Search over Encrypted Cloud Data Supporting Efficient

Multi-User Setup. Future Internet 8, 3 (2016). https://doi.org/10.3390/fi8030028

[39] Marc Tiehuis. 2015. libhcs: A partially Homomorphic C library. https://github.com/tiehuis/libhcs/tree/master/include/libhcs.

[40] Bing Wang, Wei Song, Wenjing Lou, and Y. Thomas Hou. 2017. Privacy-preserving pattern matching over encrypted genetic data

in cloud computing. In 2017 IEEE Conf. on Computer Communications, INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017. IEEE, 1–9.
https://doi.org/10.1109/INFOCOM.2017.8057178

[41] Yang Yang, Xianghan Zheng, Chunming Rong, and Wenzhong Guo. 2020. Efficient Regular Language Search for Secure Cloud Storage.

IEEE Trans. Cloud Comput. 8, 3 (2020), 805–818. https://doi.org/10.1109/TCC.2018.2814594

A SECURITY PROOF
Theorem 6.3 is proven by showing the existence of a simulator S which interacts with any semi-honest adversary

A, according to the IdealA,S experiment of Definition 6.2, to produce transcript for this experiment which is

computationally indistinguishable from the transcript of the RealP,A experiment, where A interacts with a

client through our PPSS protocol. As the simulator S knows only the leakage L as defined in Theorem 6.3,

the transcript of the IdealA,S experiment necessarily depends only on the leakage; thus, if this transcript is

computationally indistinguishable from the one of the RealP,A experiment, then it necessarily means that no

other information than L can be inferred from the latter transcript, as otherwise this additional information could

be exploited by the adversary to distinguish between the two experiments. Since the transcript of the RealP,A
experiment corresponds to the information observed and derived by the adversary in our PPSS protocol, then

no other information than L can be inferred from the adversary in our PPSS protocol, in turn proving that the

protocol leaks no more information than L to the adversary. For the sake of clarity, in the following we denote

all the variables involved in the IdealA,S experiment with a superscript Id (e.g., [[D]]Id is the privacy-preserving

representation [[D]] computed by the simulator SD ).

Simulator Construction. We now show how to construct the simulatorS. Specifically, for a document collection

D of z documents D1, . . . ,Dz and a string q, S is realized by constructing two simulators SD and Sq . The

former employs the leakage LD to build a privacy-preserving representation [[D]]Id which is computationally

indistinguishable from the privacy-preserving representation [[D]] computed by the client in our PPSS protocol.

The latter simulator employs both the leakage LD and Lq to build a trapdoor [[q]]Idj , j = 1, . . . ,w for each of the

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.

http://eprint.iacr.org/2015/722
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1109/ACCESS.2020.2980375
https://doi.org/10.1515/popets-2017-0034
https://doi.org/10.1093/bioinformatics/btw050
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1007/3-540-49649-1_28
https://doi.org/10.3390/fi8030028
https://github.com/tiehuis/libhcs/tree/master/include/libhcs
https://doi.org/10.1109/INFOCOM.2017.8057178
https://doi.org/10.1109/TCC.2018.2814594


000:38 • N. Mainardi, A. Barenghi, G. Pelosi

w rounds of the Query procedure for the string q; all these trapdoors must be computationally indistinguishable

from the trapdoors constructed by the client in thew rounds of our PPSS protocol.

• SD . Given the leakage LD = (
∑z

i=1(len(Di ) + 1),ω), where the first term
∑z

i=1(len(Di ) + 1) is denoted

in the following as n, the simulator constructs two arrays SAId
and C Id

with, respectively, n + 1 and

(n + 1) · (|Σ| + 1) elements (we assume that the alphabet Σ for the documents in D is publicly known);

each entry of these arrays contains a randomly generated string of ω bits. Lastly, the simulator outputs the

privacy-preserving representation [[D]]Id = (C Id , SAId )

• Sq . Given the leakages LD , Lq = (len(q),b, |OD,q |) and the public modulus N for the FLAHE Paillier

scheme employed by the client in the RealP,A experiment, the simulator simulator computes the values

tSA = ⌈logb (n+ 1)⌉ and tC = ⌈logb ((n+ 1) · (|Σ|+ 1))⌉. Then, the simulator constructsm = len(q) trapdoors
[[q]]Id

1
, . . . , [[q]]Idm as follows. Each trapdoor is an array with b · tC elements, where the first b entries are

integers randomly sampled in Z∗N 2
, then the subsequent b entries are integers randomly sampled in Z∗N 3

:

in general, the j-th entry contains an integer randomly sampled in Z∗

N ⌈
j
b ⌉+1

. Subsequently, the simulator

generates oq = |OD,q | trapdoors [[q]]
Id
m+1, . . . , [[q]]

Id
m+oq , where each trapdoor is an array with b · tSA

elements constructed in the same manner as the previousm trapdoors (i.e., the j-th entry contains an

integer randomly sampled in Z∗

N ⌈
j
b ⌉+1

).

We now prove that, for any probabilistic polynomial time adversary A, the output of the RealP,A experiment

is computationally indistinguishable from the output of the IdealA,S experiment when the simulator S we have

just constructed is employed. Specifically, we analyze each step of the two experiments and we show that the

adversary cannot distinguish the simulator from a legitimate client of our PPSS protocol. In both the experiments,

the adversary initially chooses a document collection D of z documents over a publicly known alphabet Σ. In
the RealP,A experiment, D is sent to the client, which constructs a privacy-preserving representation [[D]] by
running the Setup procedure of our PPSS protocol; specifically, [[D]] is composed by two cell-wise encrypted

arrays ⟨C⟩ and ⟨SA⟩ with, respectively, (n + 1) · (|Σ| + 1) and n + 1 elements. Conversely, in the IdealA,S

experiment, the simulator SD obtains the leakage LD and constructs the privacy-preserving representation

[[D]]Id as two arrays C Id , SAId
whose size is the same as ⟨C⟩, ⟨SA⟩, respectively. The semantic security of the

scheme E employed to encrypt ⟨C⟩ and ⟨SA⟩ in our PPSS protocol guarantees that a ciphertext ofω bits computed

by E .Enc is computationally indistinguishable from a random bit string of size ω, which implies that the two

privacy-preserving representations [[D]] and [[D]]Id are computationally indistinguishable too.

After receiving the privacy-preserving representations [[D]] and [[D]]Id , the adversary chooses a string q1.
In the RealP,A experiment, the string q1 is sent to the client, which employs the Query procedure of our PPSS
protocol to find all the positions of the occurrences of q1 in D. In each of thew rounds of the Query procedure,
the client employs the Trapdoor procedure to generate a trapdoor [[q1]]j , j = 1, . . . ,w , which corresponds to a

trapdoor in the Lipmaa’s PIR protocol. In the IdealA,S experiment, the simulator Sq1 receives the leakage Lq1 ,

which is employed to build a trapdoor [[q1]]
Id
j , j = 1, . . . ,w for each of thew rounds. The semantic security of

the FLAHE Paillier scheme guarantees that a ciphertext computed by the encryption procedure with length l (i.e.,
FLAHE.Elpk ) is computationally indistinguishable from a random integer in Z∗

N l+1 , which means that the set of

trapdoors [[q1]]j are computationally indistinguishable from the set of trapdoors [[q1]]
Id
j .

Subsequently, in the RealP,A (resp. IdealA,S) experiment, the trapdoor [[q1]]j (resp. [[q1]]
Id
j ) generated by

the client (resp. Sq1 ) in each of thew rounds is received by the adversary which employs the Search procedure

of Lipmaa’s PIR protocol to compute a ciphertext [[resj ]] (resp. [[resj ]]
Id
). The semantic security of the FLAHE

Paillier scheme guarantees that all the intermediate values computed by each homomorphic operation of the

Search procedure in the RealP,A experiment are computationally indistinguishable from the corresponding

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.



Privacy-aware character pattern matching over outsourced encrypted data • 000:39

intermediate values in the IdealA,S experiment. Indeed, in the former experiment, given two ciphertext c1 and
c2 in Z

∗

N l for the FLAHE Paillier scheme, each homomorphic addition computes cadd = c1 · c2 mod N l
, with

cadd being a ciphertext in Z∗
N l ; in the latter experiment, the homomorphic addition multiplies two random

integers in Z∗
N l , obtaining a new random integer in Z∗

N l which is computationally indistinguishable from cadd .

Similarly, in the RealP,A experiment, given a ciphertext c1 ∈ Z
∗

N l and a ciphertext c2 ∈ Z
∗

N l+1 , each hybrid
homomorphic multiplication computes chmul = cc1

2
mod N l+1

, with chmul being a ciphertext in Z∗
N l+1 ; In the

IdealA,S experiment, each hybrid homomorphic multiplication computes the exponentiation between a random

integer in Z∗
N l+1 and a random integer in Z∗

N l , obtaining a new random integer in Z∗
N l+1 which is computationally

indistinguishable from chmul . Therefore, as the Search procedure of Lipmaa’s PIR performs only homomorphic

operations, we conclude that all values (including the outcomes [[resj ]] and [[resj ]]
Id
) observed by the adversary

throughout this computation in the RealP,A and IdealA,S experiments are computationally indistinguishable.

In conclusion, the adversary cannot distinguish an interaction with a legitimate client in our PPSS protocol from

an interaction with the simulator Sq1 for the first query q1.
We note that the same reasoning allows to prove that all the trapdoors and the intermediate values observed

by the adversary in the subsequent d − 1 queries in the two experiments are computationally indistinguishable.

Indeed, in each query, the simulator simply needs to construct trapdoors which looks like generic FLAHE Paillier

ciphertexts as computed by the legitimate client in our PPSS protocol independently from their corresponding

plaintext value, as the semantic security of the scheme hides any information about the encrypted information

stored in these trapdoors.

Digit. Threat. Res. Pract., Vol. 00, No. 0, Article 000. Publication date: 2020.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Substring Search with BWT
	3.2 Cryptographic Building Blocks
	3.3 Lipmaa's PIR Protocol

	4 Proposed PPSS Protocol
	4.1 Multi-User Extension
	4.2 Verifiability of retrieved data

	5 Queries with Wildcard Characters
	5.1 Format of Patterns in Queries
	5.2 PPSS Protocol for Pattern

	6 Security Analysis
	7 Experimental Evaluation
	8 Concluding remarks
	Acknowledgments
	References
	A Security Proof

