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A B S T R A C T   

The Index of Cognitive Activity (ICA) was introduced as a promising pupillary workload measure for field in-
vestigations since, unlike pupil dilation, it is not affected by illumination. Recent studies have investigated the 
ICA for task-evoked cognitive workload with contradictory findings. However, few studies investigated the in-
fluence of illumination on the ICA. Therefore, to examine inconsistencies regarding the reliability for workload 
measurement and the effects of light, a meta-analysis was conducted based on a structured literature review. The 
meta-analysis considered k = 14 studies with a total sample size of N = 751 participants. Results showed sig-
nificant effects for workload (r = 0.61) and light (r = 0.45) on the ICA. Since moderating effects were found for 
several between-study differences, it seems likely that different cognitive processes and settings affect the in-
dicator and should be considered in empirical investigations. According to the findings, the ICA is a reliable 
indicator for task-evoked workload. However, light influences were found which indicates that evidence-based 
conclusions regarding the ICA's practical applicability require further research.   

1. Introduction 

The Index of Cognitive Activity (ICA) has been subject to increasing 
attention in ergonomic and psychological research within the last de-
cades. Introduced by Marshall (2000) it is associated with cognitive 
pupillary response separated from light influences. The ICA is a 
pupillary-based algorithm, which calculates a Daubechies wavelet 
analysis separating workload dilation from light dilation. The ICA as-
serts that workload dilation is reflected by phasic small rapid pupillary 
signals extending the tonic threshold value of light dilation. The calcu-
lation is finalized by adjusting for outliers employing a hyperbolic 
tangent transformation (Marshall, 2000). According to literature, it 
provides an alternative to task-evoked pupillary workload measure-
ments in field investigations. 

However, the ICA has been facing some criticism amongst literature, 
since it is a proprietary measure due to intransparency of the algorithm. 
Addressing this fact, Duchowski et al. (2018) for instance have devel-
oped a similar pupillary wavelet-based indicator, the Index of Pupillary 
Activity (IPA). In contrast to the ICA, the IPA algorithm is completely 

accessible. The IPA differs from the ICA in certain key aspects, such as 
the use of symlet-16 wavelets instead of Daubechies wavelets and a 
different threshold approach by using periodic DWT (Duchowski et al., 
2018, p. 282). Though, little effort was done to investigate the influence 
of illumination on the ICA in literature, yet. 

In general, the cognitive pupillary response physiology is related to 
the locus coeruleus due to the activity of the central nervous system 
when cognitive workload is induced (Mathôt, 2018). The resulting 
dilation is characterized by rapid small phasic pupil signals below 0.5 
mm amplitude, peaking about 0.1 mm above the tonic dilation level 
(Beatty & Lucero-Wagoner, 2000). Therefore, pupillary response is 
associated with information processing effort in current empirical 
research fields (Backs & Walrath, 1992). Empirical evidence on this 
“task-evoked pupillary response” (TEPR) was found in numerous 
research work since the 1960s (Ahern & Beatty, 1979; Beatty, 1982; 
Beatty & Kahneman, 1966; Chen et al., 2016; Matton et al., 2020; Oliva, 
2019; Orlandi & Brooks, 2018; Peavler, 1974; Tao et al., 2019; van der 
Wel & van Steenbergen, 2018; Wu et al., 2019). 

However, standardization of light conditions is yet an unsolved 
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problem in research, limiting this kind of physiological workload eval-
uation to standardized laboratory settings. Realizing reliable pupillary 
measurement in uncontrolled work environments dealing with changing 
light conditions, e.g. production or office environments, would be a 
promising measure concerning physiological workload assessment. 
Thus, the ICA could contribute to further advances in ergonomic 
research improving working conditions. 

1.1. State of the research 

1.1.1. Single tasks 
The Index of Cognitive Activity has been investigated in numerous 

settings with regards to cognitive activity (Fairclough et al., 2009; 
Korbach et al., 2017, 2018; Rerhaye et al., 2018; Richstone et al., 2010; 
Schwalm, 2009). Initially, scientific evidence for the relationship to 
cognitive workload has been found concerning the difficulty of mental 
arithmetic tasks (Marshall, 2000, 2002; Marshall, 2007; Marshall et al., 
2004) and was related to arousal (Marshall, 2002) reflecting cognitive 
states during information processing (Marshall, 2007). Supporting these 
findings, Schwalm (2009) reported significant effects on the ICA, of both 
task difficulty and perception modality, whereby auditory information 
input led to significantly higher ICA means than visual provided infor-
mation. Further, statistical evidence for the ICA's sensitivity to 
increasing task difficulty was found by Tourtouri et al. (2019) in a 6- 
back task setting. The findings of Rerhaye et al. (2018) showed differ-
ences in significance between task types. However, there are also con-
tradicting findings that did not confirm an effect of task-evoked 
cognitive activity on the ICA (Czerniak et al., 2021; Korbach et al., 2017, 
2018). 

1.1.2. Multiple tasks 
The ICA has also been investigated in more complex informational 

tasks (Bartels & Marshall, 2012; Demberg, 2013; Demberg et al., 2013; 
Dlugosch et al., 2013; Marshall et al., 2003; Matthews et al., 2015; 
Platten, 2012; Reinerman-Jones et al., 2014; Schwalm, 2009; Schwalm 
et al., 2008; Vogels et al., 2018). In this context, some authors increased 
complexity involving multiple parallel tasks to provide a more realistic 
setup. Effects of task difficulty on the ICA in these settings were found in 
several studies. Bartels and Marshall (2012) investigated a combination 
of smooth pursuit, mental arithmetic, and attention tasks reporting 
significant differences between the conditions. In particular, dual-task 
designs are employed frequently in driving simulations, where a sec-
ondary cognitive task is applied to the visual-motor reactive main task of 
driving lane changes and traffic attention. For instance, Dlugosch et al. 
(2013) investigated driving tasks with additional cognitive tasks and 
concluded that the ICA significantly increased in these conditions. 
Schwalm et al. (2008) argued that participants focused more on the 
secondary task, indicating that the ICA is likely to reflect strategy and 
attention shifts of the driver during dual tasks, which supports the 
findings of Marshall et al. (2003) and Demberg et al. (2013). Consis-
tently, Vogels et al. (2018) found a significant decrease in the ICA in dual 
task settings as compared to the single task and even bigger effects for 
more difficult secondary tasks. In contrast, the results of Matthews et al. 
(2015) could not support this assumption. 

1.1.3. Linguistic processing 
As linguistic processing can be related to phasic small pupillary re-

sponses, a few studies investigated the ICA in that context (Ankener 
et al., 2018; Demberg et al., 2013; Demberg & Sayeed, 2016; Sekicki & 
Staudte, 2018; Tourtouri et al., 2019). According to Demberg et al. 
(2013), the ICA reflects linguistic complexity, which was supported by 
the findings of Demberg and Sayeed (2016). Connected to processing 
effort, information-theoretic concepts of entropy (Shannon & Weaver, 
1949) and surprisal (Levy, 2008) have been subject to recent studies. In 
this context, findings of Ankener et al. (2018) reveal the ICA was 
affected by surprisal, which caused processing effort of the given 

linguistic stimuli. In line with that, Tourtouri et al. (2019) found sig-
nificant differences in comprehension of different words combined with 
visual cues of manipulated entropy. The ICA further showed that visual 
attention shifts towards the cued object lowers the effort required for 
processing the linguistic reference (Sekicki & Staudte, 2018). 

1.1.4. Visual influences 
Concerning the indicator's sensitivity for visual influences, such as 

light, only a few studies exist (Czerniak et al., 2021; Debue & van de 
Leemput, 2014; Marshall et al., 2004; Rerhaye et al., 2018). Results of 
Marshall et al. (2004) showed statistical evidence for the indicator's 
robustness towards light, which was supported by results of Rerhaye 
et al. (2018) during a mental rotation task. Interestingly, the ICA seemed 
to be significantly affected by light in their Stroop task, although the 
light manipulation was similar for both tasks. The findings of Czerniak 
et al. (2021), on the other hand, investigated visual effects without any 
cognitive task, revealing significant effects of screen polarity, which is a 
crucial finding concerning the indicator's definition. However, no sig-
nificant differences were found for visual load by information presen-
tation. These results were supported by findings of Debue and van de 
Leemput (2014), who investigated visual influences by manipulating the 
type of information displayed. 

1.2. Motivation and research questions 

In summary, literature does not reveal a uniform picture of the 
reliability of Index of Cognitive Activity concerning task-evoked 
response and light. Although all studies followed similar research 
questions, results reveal inconsistent results concerning significance and 
effect sizes, thus prohibiting a valid conclusion concerning the in-
dicator's evidence. It seems likely that this inconsistency can be related 
to between-study variability, and thus moderating effects have to be 
considered as influencing factors. For one, it can be assumed that 
different cognitive tasks require different cognitive resources and affect 
arousal differently, for instance, when time pressure is induced by task 
pace or multiple tasks have to be conducted in parallel. Further, the type 
or number of modalities addressed by the task is likely to have an in-
fluence on the ICA. Moreover, studies differed in sample sizes, repeated 
measures, and normalization, which are all features likely to affect re-
sults and effect sizes. It seems further likely that differences in results 
may be related to the question of how sensitive is the indicator to 
multiple workload levels. Although the used hardware seems unlikely to 
have an effect on the results according to Marshall et al. (2004), it still 
seems important to consider this as an influence due to quality and 
measurement differences. Furthermore, the number of studies investi-
gating the actual effect of light towards the ICA is rare and likewise 
generated contradictory results (Czerniak et al., 2021; Marshall et al., 
2004; Rerhaye et al., 2018). Between-study differences with a potential 
moderating effect can be found with regards to the type of light, the 
speed of change, the type of cognitive activity, modality influences and 
the quality of the studies. In order to give deeper insight into this topic, 
the following research questions were evaluated utilizing a meta- 
analysis:  

• is the ICA a reliable indicator for task-evoked cognitive workload,  
• is the ICA sensitive to light, and 
• which influencing factors moderate the relationship between work-

load and the ICA? 

2. Method 

The present research provides a meta-analytical approach based on a 
structured literature research investigating the Index of Cognitive Ac-
tivity as a workload measure following the PRISMA statement (Moher 
et al., 2009). Meta-analysis is a technique consolidating the results of 
multiple studies on a similar topic to a single estimate of the magnitude 
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of an effect concerning a given hypothesis. In comparison to commonly 
practiced narrative reviews, the advantage is a statistical outcome 
combining effect sizes in forms of a correlation, thus allowing for con-
clusions with more reliable statistical evidence. Despite well-known 
disadvantages such as heterogeneity, the garbage-in garbage-out prob-
lem, as well as publication or selection biases, meta-analytic results are 
more powerful in outlining the scope of the research domain, mini-
mizing data waste, and following focused research compared to tradi-
tional narrations (Rosenthal & DiMatteo, 2001). 

2.1. Search strategy 

To analyze the Index of Cognitive Activity with a meta-analysis, a 
structured literature review was conducted in March 2020. The research 
included literature published between January 2000 and April 2021 
(including early access publications) using the databases “Web of Sci-
ence”, “Scopus”, “Pubmed” and “Google Scholar”. The following search 
term and syntax was defined: (“index of cognitive activity” OR ICA) AND 
(eye* OR pupil*). Additionally, since Marshall (2000), as a first and 
fundamental publication, patented the Index of Cognitive Activity, a 
forward reference search was performed in “Google Scholar”. In order to 
address publication bias, unpublished results were searched for on 
ResearchGate and asked for in message boards. Moreover, the authors of 
the considered studies were contacted via email. However, through this 
procedure, no additional studies could be identified. 

2.2. Inclusion criteria 

For inclusion in the meta-analysis, publications in journals, confer-
ences, or dissertations were considered. Further, a publication was 
included in the meta-analysis if: 1) it dealt with empirical experiments 
investigating the Index of Cognitive Activity as a dependent variable, 2) 
a cognitive task was conducted with at least two difficulty levels, 3) 
sufficient information was given to determine effect size, 4) the sample 
included adults, 5) the sample did not include clinical samples, 6) the 
language was German or English, 7) the publication date was between 
2000 and April 2021, 8) the statistical method applied was based on 
variance analysis to ensure comparability of the results. This refers to 
ANOVA calculations since none of the found studies compared only two 
conditions. 

2.3. Data extraction and coding 

Relevant articles were initially examined by the first author. Abstract 
and full paper screening as well as extraction of detailed information and 
coding from each article was done by two persons. The information 
included descriptions of the sample, statistical results (F-values, df, p- 
values, effect sizes), and experimental differences (e.g. study design, 
task, or response type), which were analyzed for moderating effects. 
Extracted data including moderators are shown in Tables B.1 to B.2 
(workload) and Tables C.1 to C.2 (light). 

2.4. Study quality 

A scale assessing methodological quality was developed referring to 
previously reported checklists (Reed et al., 2007; Wells et al., 2011), 
since no applicable scale was available for the present purpose. 
Excluding and adapting items concerning treatment and control groups 
and clinical information required, the scale provides a brief quality 
overview using eight items (see Table A.1). Quality was estimated by 
summing weights of the items, scoring between 1 (lowest achievable 
score) and 10 (highest achievable score) in total. Most items were coded 
in two weights 1 “yes” and 0 “no” to simplify data extracting. Two items, 
namely publication type and sample size, were coded in three weights 
from 0 to 2 in increasing order. However, the scale only gives an 
orientation concerning quality addressing only the most obvious quality 

features without going into detail. It does not provide a general meth-
odology, since metrics are simplified and items do not claim complete-
ness or validity. 

2.5. Data preparation 

For one degree of freedom (df1 = 1), Eq. (1) holds (Rosenthal & 
DiMatteo, 2001): 

r =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
F

F + df 2

√

(1)  

where 

r = Pearson's r 
F = F-value 
df2 = degrees of freedom of error. 

For more than one degree of freedom (df1 > 1) the relation between r 
and F-statistics values can be derived by Eq. (2): 

r =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

1 +
df 2

F×df 1

√

(2)  

where df1 = degrees of freedom of treatment. 
The one-tailed standard normal deviate Z of p was used if no F-sta-

tistics were given; Z-scores were determined according to Rosenthal and 
DiMatteo (2001) if only a range was given for p; Z was assigned with 
zero with a corresponding r of zero if results were not significant. 

2.6. Statistical analysis 

Subsequent meta-analytical statistics were calculated using R sta-
tistics (version 4.0.3) and the Metafor package (Viechtbauer, 2010) in R 
Studio following Quintana (2015). Hedges & colleagues' method using 
Fisher's z-transformation was used for calculation (Hedges & Olkin, 
1985; Hedges & Vevea, 1998) proceeding with a random-effects model. 
The mean ICA of both eyes was prioritized over single eye ICA values 
when multiple ICA values were given. Otherwise, left eye ICA was 
designated over right eye ICA. Effect sizes were aggregated by weighted 
mean according to Hunter and Schmidt (2004) utilizing MAc package 
(Del Re & Hoyt, 2010) if multiple tasks were conducted using a within- 
subjects design to correct for measurement error bias in correlation. 
Between-study heterogeneity was quantified using the Q-value, τ2, and 
I2 statistics. Sensitivity analysis was conducted after Higgins et al. 
(2021) in order to assess the robustness of the results. 

Moderators were analyzed by mixed-effects models running REML- 
estimator (Corbeil & Searle, 1976) to point out influences of between- 
study differences on the results. Concerning the workload analysis, 
task type, study design, i.e. repeated measures, number of simultaneous 
tasks, determination of time interval, number of factor levels, stimulus 
and response modalities, data normalization, eye-tracker hardware, and 
study quality were identified by literature analysis. When proceeding 
with the analysis of “hardware” as a moderator, the study of Bartels and 
Marshall (2012) was excluded, since they used four different devices in 
the evaluation. With regards to the light analysis, it was found to be of 
interest to investigate if the type of light source and speed of light 
change, as well as additional cognitive activity during the exposure 
respective the here used stimulus modality, or study quality influence 
the results of the meta-analysis. 

3. Results 

3.1. Study selection 

The initial search identified 2022 records (including duplicates), of 

J.N. Czerniak et al.                                                                                                                                                                                                                             



Acta Psychologica 220 (2021) 103402

4

which 146 remained after title and abstract screening. Twelve records 
were retrieved for duplication appraisal. The exclusion of references was 
mainly due to a lack of evaluation of the Index of Cognitive Activity as 
an eye metric. 134 potentially eligible records were reviewed by full 
text, of which 120 were excluded due to missing information about data 
outcome or mismatching inclusion criteria, mostly because of clinical 
settings or linear regression analysis. Altogether 14 studies were 
included in the meta-analysis, of which twelve were analyzed concern-
ing workload; four studies provided experiments concerning light 
sensitivity. Fig. 1 shows a flow chart of the study selection. 

3.2. Descriptive statistics 

14 studies with a total sample size of N = 751 participants were 
included in the meta-analysis investigating the Index of Cognitive Ac-
tivity. Sample sizes range between 14 and 150 participants per study 
(AM = 53.6, SD = 54.2). In total 373 female, 336 male, and 0 non-binary 
or transgender participants were reported in the studies (k = 13). Mean 
age of the participants was 24.9 years, SD = 5.0 years (k = 12). Gender 
and mean age of participants may deviate from the actual N included, 
since some studies did not correct after excluding data or inclusion was 
not reported transparently. 

3.3. Workload analysis 

A total of k = 12 studies (N = 710 participants) were included in the 
meta-analysis investigating the Index of Cognitive Activity concerning 
workload. Sample sizes ranged between 14 and 150 participants per 
study (AM = 59.2, SD = 56.9). In total 352 female, 316 male, and 0 non- 
binary or transgender participants were reported in the studies (k = 11). 
Mean age reported was 25.0 years, SD = 5.4 years (k = 11). Table B.1 
includes descriptive information. Statistical data considered for the 
analysis are shown in Table 1. 

The forest plot in Fig. 2 visualizes the results of the obtained data set. 
Correlations and 95% CIs are reported for each study as well as the 
summary effect of r = 0.61, 95% CI [0.30, 0.80]. Results of four studies 
(Czerniak et al., 2021; Korbach et al., 2017, 2018; Rerhaye et al., 2018) 

indicate no significant correlation between workload and the ICA since 
the confidence intervals of these studies include zero. 

3.3.1. Heterogeneity and publication bias 
The test for residual heterogeneity was significant Q(11) = 134.40, p 

< .0001, τ2 = 0.2357 (SE = 0.12), Higgins's I2 = 92,4%, 95% CI [16.28, 
75.56], indicating that variation is nearly completely reflected by actual 
differences in the population mean, indicating that 92.4% of variation 

Fig. 1. Identification of relevant studies.  

Table 1 
Statistical data for meta-analysis of the ICA concerning cognitive workload (k =
12).  

ID Author(s) (year) F df1 df2 p r ragga 

1 Bartels and 
Marshall (2012) 

44.211 2 144  <.001***  0.62 – 

2 Czerniak et al. 
(2021) 

1.191 2.8 58.81  .32  0 – 

3 Dlugosch et al. 
(2013) 

72.07 4.49 67.39  <.001***  0.91 – 

4 Fairclough et al. 
(2009) 

7.26 6 8  <.05*  0.92 – 

5 Korbach et al. 
(2017) 

<1 n.a. n.a.  >.05  0 – 

6 Korbach et al. 
(2018) 

2.094 2 75  >.05  0 – 

7 Marshall et al. 
(2004) 

10.67 1 21  .004**  0.58 – 

8 Matthews et al. 
(2015) 

n.a. n.a. n.a.  <.01*  0.19 – 

9 Platten (2012) 103.23 2 34  0.001*  0.93 – 
10 Reinerman-Jones 

et al. (2014) 
n.a. n.a. n.a.  <.01*  0.19 – 

11 Rerhaye et al. 
(2018) 

n.a. n.a. n.a.  .003*  0.73 0.42 
n.a. n.a. n.a.  .136  0 

12 Schwalm et al. 
(2008) 

259.17 1 14  <.001*  0.95 – 

* p < .05, ** p < .01, *** p < .001. 
a Aggregated correlation coefficient after Hunter and Schmidt (2004). 
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reflected actual differences in the included studies revealing that there is 
limited homogeneity in the sample size. A Baujat plot (Baujat et al., 
2002) did not show any strong outliers but revealed that the study of 
Schwalm et al. (2008) mostly influenced heterogeneity. This finding was 
supported by outlier detection according to Cook (1977). Fig. B.1 shows 
the corresponding funnel plot. In order to assess the robustness of re-
sults, a sensitivity analysis (Higgins et al., 2021) without the study of 
Schwalm et al. (2008) was conducted. Results confirm robustness of the 
present main analysis with a significant summary effect of r = 0.54, 95% 
CI [0.23, 0.76]. 

However, no data were excluded from the meta-analysis. Rank cor-
relation test (Kendall's τ = 0.43, p = 0.06) testing for publication 
asymmetry was not statistically significant, hence there is no evidence of 
publication bias (Begg & Mazumdar, 1994; Egger et al., 1997). 

3.3.2. Moderators 
Investigated Moderators and results of the analysis can be derived 

from Table 2. A description of their characteristics is provided in 
Table B.2. In order to identify further sources of heterogeneity, moder-
ating effects were investigated. The most obvious difference between the 
studies was the different types of tasks to be conducted for cognitive 
workload. Indeed, moderator analysis revealed a significant effect, 
QM(7) = 151.46, p < .001, with homogeneous subgroups (QM(4) = 5.06, 
p = .28). Normalization, QM(2) = 48.29, p < .001, and eye tracker, 
QM(3) = 11.44, p = .01, moderated significantly, but did not reveal 
heterogeneous subgroups (p < .001). It was further assumed that the 
pace of presented stimuli had a moderating effect on the ICA due to 
cognitive arousal and time pressure. However, computing the random 
effects model reveals that the type of pace did not have a moderating 
effect. Further, it was investigated whether there was a difference be-
tween visual, verbal, and haptic stimulus and response, which showed 
neither a moderating effect of stimulus nor a moderating effect of 
response type. Analyzing both the number of factor levels and study 
quality showed a moderating effect. Additionally, the year of 

Fig. 2. Forest plot “load” of Pearson r correlations concerning the Index of Cognitive Activity (ICA) obtained from a random-effects model.  

Table 2 
Results of moderator analysis of cognitive workload. Mixed Effects Model (REML).  

Moderator QM dfM pM QE dfE pE I2 [%] τ2 

Task  151.46  7  <.001***  5.06  4  .28  0.02  0.00 
Study design  2.04  1  .15  155.89  10  <.001***  95.09  0.42 
Simultaneous tasks  1.14  1  .29  134.37  10  <.001***  95.57  0.46 
Time interval  0.43  1  .51  110.76  8  <.001***  96.30  0.50 
Stimulus  2.74  2  .25  105.49  9  <.001***  95.29  0.43 
Response  5.28  2  .07  125.69  8  <.001***  94.50  0.38 
Factor level  1.60  1  .21  143.54  10  <.001***  95.87  0.44 
Normalization  48.29  2  <.001***  44.91  9  <.001***  76.82  0.06 
Eye tracker  11.44  3  .01*  35.38  6  <.001***  92.53  0.27 
Quality  4.20  1  .04*  103.82  10  <.001***  94.66  0.34 
Year  4.05  1  .04*  75.79  9  <.001***  95.23  0.42 
Author  0.04  9  .85  99.80  9  <.001***  93.89  0.34 

QM = Crochan's Q of moderation, dfM = degrees of freedom of moderation, pM = significance level of moderation, QE = Crochan's Q of heterogeneity, dfE = degrees of 
freedom of heterogeneity, pE = significance level of heterogeneity, I2 = Higgins's I2, τ2 = Tau2. 
* p < .05, *** p < .001. 
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publication and Marshall as an author were investigated. Neither 
revealed moderating effects, QM(1) = 4.05, pM = .04, QE(9) = 75.79, pE 
< .001 and QM(1) = 0.04, pM = .85, QE(9) = 99.80, pE < .001, 
respectively. 

3.4. Light analysis 

The studies included in the meta-analysis (k = 4) involved N = 77 
participants, ranging between 14 and 22 participants (AM = 18.6, SD =
3.6). In total 32 female, 35 male, and 0 non-binary or transgender 
participants were reported in the studies (k = 3). The mean age reported 
was 22.9 years, SD = 3.3 years (k = 3). Descriptive statistics are shown 
in Table C.1. Statistical data can be derived from Table 3. 

The forest plot in Fig. 3 visualizes the obtained data set sorted by 
effect size. The plot reveals that two studies were not significant showing 
a confidence interval including zero (Marshall et al., 2004; Rerhaye 
et al., 2018). Correlations and 95% CIs are reported for each study as 
well as the summary effect of r = 0.45, 95% CI [0.05, 0.73]. 

3.4.1. Heterogeneity and publication bias 
The test for residual heterogeneity was significant (QM(3) = 9.6, p <

.0001, τ2 = 0.14 (SE = 0.17) Higgins's I2 = 68.1%; 95% CI 2.5, 97.61), 
indicating that 68.1% of variation reflected actual differences in the 
included studies revealing that there is limited homogeneity in the 
sample size. The Baujat plot (Baujat et al., 2002) reveals that the studies 
of Czerniak et al. (2021) and Marshall et al. (2004) contribute most to 
heterogeneity. However, since the sample size consisted of a very small 
number of studies, no sensitivity analysis excluding outliers could be 
conducted. Fig. C.1 shows the corresponding funnel plot. The rank 
correlation test (Kendall's τ = 0.33, p = .75) was not statistically sig-
nificant, thus providing no evidence of publication bias (Begg & 
Mazumdar, 1994; Egger et al., 1997). 

3.4.2. Moderators 
To explain heterogeneity, moderating effects of light change speed, 

light source, normalization, and quality were hypothesized. Type, 
QM(1) = 4.24, pM = 0.04, QE(2) = 2.96, pE = .23, and quality, QM(1) =
4.31, pM = .03, QE(2) = 2.93, pE = .23, showed significant moderating 
effects. Investigated Moderators and results of the moderator analysis 
are shown in Table 4. Characteristics and moderator levels are shown in 
Table C.2. 

4. General discussion 

The present meta-analysis investigated the ICA as an informational 
workload indicator since prior research on that topic revealed contra-
dictory findings. Based on systematic literature research, twelve studies 
were investigated for this purpose. Pearson's r was applied as an effect 
size measure due to several advantages over distance measures. Results 
reveal a significant relationship between informational tasks and the 
Index of Cognitive Activity and likely indicate its eligibility for task- 
evoked cognitive workload. Results of the present analysis show that 
the ICA seems to indicate cognitive workload in informational work 
tasks, similar to task-evoked pupillary response (TEPR). According to 

literature, both indicators rely on phasic pupil fluctuations. These are 
typically derived by baseline-correction of the pupil size in TEPR (Beatty 
& Lucero-Wagoner, 2000). This procedure does not solve for artifacts of 
light dilation. In contrast, the ICA algorithm calculates the phasic 
component through frequency analysis, ignoring the signal amplitude, 
and thus ignoring light dilation. This was not supported by the present 
analysis, which revealed an effect of light on the ICA. In summary, both 
indicators cope with current individual differences in pupil size and lack 
in providing a zero reference for cognitive workload. However, since 
there is little insight into the ICA algorithm, a more detailed comparison 
between the indicators becomes quite difficult and needs to be investi-
gated in future research. Meta-analytic results concerning both, the ICA's 
sensitivity towards task-evoked cognitive workload and light influences, 
will be discussed in the following. 

4.1. Workload 

Results show a high amount of heterogeneity and, thus between- 
study variability cannot be explained fully by sampling error but also 
indicates influences of study characteristics. This was supported by 
moderator analyses, revealing effects of the type of cognitive task, 
normalization of data, and the type of hardware used. Moderator anal-
ysis revealed the following findings: The tasks investigated in the 
analyzed experiments in particular differed with regard to the type of 
cognitive resources utilized and task complexity. Therefore, it seemed 
likely that the ICA's sensitivity depends on task characteristics and was 
further hypothesized to be influenced by differences in cognitive pro-
cessing. For this reason, task complexity due to multiple parallel tasks 
was currently considered as a moderator. Surprisingly, although task 
type moderated the ICA, no significant influences were found for 
simultaneously conducted parallel tasks. Based on prior research it was 
further hypothesized that the ICA is not likely to distinguish between 
different increasing levels of workload. However, moderator analyses 
concerning the number of factor levels did not support this assumption. 
With regards to arousal, it was assumed that, for instance, time pressure 
is likely to intensify provided attentional resources. Included studies 
consisted of given time intervals ranging from several seconds to a 
couple of minutes (paced) and undefined time intervals (self-paced), 
likewise. It was therefore assumed that the characteristics of the time 
interval in relation to the task requirements are likely to affect results. 
However, this hypothesis was not supported by the present moderator 
analysis. 

Moreover, literature on multisensory perception reveals task- 
dependent differences in information processing effort concerning 
attention allocation of multiple resources (Chan & Newell, 2008; Wahn 
& König, 2016). Concerning object-based tasks, the ANS activity was 
found to rely on separated resources concerning visual and auditory 
attention (Chan & Newell, 2008; Wahn & König, 2016), whereas visual 
and tactile modalities partially use similar resources (Dell'Acqua et al., 
2001). Following this thought, stimulus and response modalities were 
likely to moderate the results. However, the present analysis concerning 
stimuli and response did not indicate any effect of processing modality 
on the ICA. This leads to the hypothesis that the indicator is not likely 
affected by perceptual workload. 

Despite expected moderating effects caused by differences in infor-
mation processing by the above discussed cognitive models, several 
methodological aspects were expected to influence the ICA as a work-
load indicator, namely: data used for analysis, eye-tracking hardware, 
and study quality. In particular, only the hardware was found to be 
homogenously moderating the correlation of these variables signifi-
cantly. Eye-tracking hardware differs a lot in their specifications, such as 
device type (remote or glasses), sensor type (infrared or camera), mea-
surement rate (Hertz), or quality. Since the present analysis included 
studies that used several eye trackers it was expected to find moderating 
effects by this variable. Indeed, moderator analysis revealed a significant 
effect of the hardware. However, these findings are contradicting the 

Table 3 
Statistical data for meta-analysis of the ICA concerning light influences (k = 4).  

ID Author(s) (year) F df1 df2 p r ragga 

1 Czerniak et al. (2021) 27.10 1 17  <.001***  .78 – 
2 Kahya et al. (2018) n.a. n.a. n.a.  .15  .51 – 
3 Marshall et al. (2004) 3.54 1 21  .07  0 – 
4 Rerhaye et al. (2018) n.a. n.a. n.a.  .06  0 0.35 

n.a. n.a. n.a.  .012*  .60  

* p < .05. 
*** p < .001. 
a Aggregated correlation coefficient after Hunter and Schmidt (2004). 
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results of Bartels and Marshall (2012), according to which no differences 
between four investigated eye trackers were shown. 

Results reported in the considered studies specifically differed in 
data preparation. In particular the statistical analysis in most studies 
refers to original ICA outputs solely adjusted for blinks and measure-
ment errors. Only a little number of studies normalized data by mean 
and standard deviation (z-transformation) or threshold values (mini-
mum-maximum-normalization). But although a general moderating ef-
fect could be observed in this case, results do not indicate a general 
significant influence through data normalization due to inhomogeneous 
subgroups. This lack of homogeneity is likely to be related to a high 
variance in the number of subgroup items per group in the present meta- 
analysis. 

It is well known that the quality of included studies to a meta- 
analysis affects the meaningfulness of the outcome effect size to a 
certain amount. Thus, its consideration is mandatory in such analyses. 
Unfortunately, only few publications were found to be suitable for the 
present meta-analysis in literature. For this reason, excluding studies 
was intentionally foregone in the present research. Consequently, it was 
required to monitor potential effects and to investigate study quality as a 
moderator. Results did not reveal a significant influence of quality in 
general, since despite a moderating effect was found at first, subgroups 
were shown to be inhomogeneous. Thus, it can be assumed that the 
compilation of the present studies relatively comprehensive and unbi-
ased regarding the analysis. It was further investigated if authorship of 
the patent holder or publication year, for example due to improved 
measurement techniques, significantly influenced the results. However, 
neither Marshall as an author nor the publication year revealed 
moderating effects. 

4.2. Light 

The present meta-analysis of light revealed a moderate summary 
effect on the ICA, indicating that light is likely to affect the ICA in some 
circumstances despite wavelet separation. This result cannot be 
explained by the present results. However, it has to be considered that 
results are likely to be affected contrary due to dependent sample sizes of 
included studies with repeated measures designs. Consequently, the 
currently calculated effect size is expected to be slightly overestimated 
and is likely to be corrected downwards. However, the actual impact of 
the expected overestimation on the summary effect size cannot be sta-
tistically quantified further, at this point. Based on the above stated 
assumptions, the overall influence of light on the ICA is therefore esti-
mated between a small and moderate effect size. Additionally, and 
limiting our findings, the study of Kahya et al. (2018) investigated 
postural demand, but since their results did not reveal a significant main 
effect on the factor postural control, it was concluded that significant 
differences were more likely to be related to effects of occluding the eyes 
than to cognitive postural control. 

The findings for heterogeneity again reveal between-study variance 
and point to moderating variables. However, neither of the hypothesized 
factors regarding light were found to be significant moderators. Never-
theless, the eye tracker had an influence on the results, revealing that the 
implementation is likely to differ between hardware platforms. Since 
heterogeneity was relatively high, it seems likely that even more in-
fluences exist that were not considered for the present analysis or were 
not even reported. In summary, the present analysis could not disprove 
concerns about the ICA's light sensitivity. 

4.3. Limitations 

It has to be considered that most of the studies utilized a within- 
subjects design with multiple factor levels, and thus the summary ef-
fect size is likely overestimated (Bortz & Döring, 2002). To avoid further 
overestimation of the effect size, aggregating multiple effect sizes was 
prioritized over the common practice of selecting the largest effect size 
or averaging. Further, setting non-significant results to zero is likely to 
slightly counteract overestimation. 

F-statistics used for this meta-analysis were extracted from reported 
univariate main effects of task difficulty on the ICA. Hence, interactions 
between several independent variables were not considered since 
included studies calculated multiple ANOVAs, not revealing de-
pendencies. Therefore, any effects of other variables cannot be excluded. 

Finally, the sample size is relatively small, especially in the light 
analysis, due to a limited number of publications applying variance 
analyses. Here, the problem of publication asymmetry has to be 
considered. When searching for unpublished results, no further studies 

Fig. 3. Forest plot “light” of Pearson r correlations concerning the Index of Cognitive Activity (ICA) obtained from a random-effects model.  

Table 4 
Results of moderator analysis of light influences. Mixed Effects Model (REML).  

Moderator QM dfM pM QE dfE pE I2 [%] τ2 

Light source  1.62  2  .45  3.04  1  .08  67.09  0.16 
Light change  2.55  2  .28  2.89  1  .09  65.43  0.10 
Stimulus  1.06  1  .30  5.93  2  .05*  66.59  0.13 
Type  4.24  1  .04*  2.96  2  .23  35.71  0.04 
Quality  4.31  1  .03*  2.93  2  .23  32.48  0.03 

QM = Crochan's Q of moderation, dfM = degrees of freedom of moderation, pM =

significance level of moderation, QE = Crochan's Q of heterogeneity, dfE = de-
grees of freedom of heterogeneity, pE = significance level of heterogeneity, I2 

=

Higgins's I2, τ2 = Tau2. 
* p < .05. 

J.N. Czerniak et al.                                                                                                                                                                                                                             



Acta Psychologica 220 (2021) 103402

8

could be identified. However, present results did not reveal evidence of 
publication bias. Another aspect to be considered in the light analysis is 
the use of a very small sample size (k < 10). This has to be outlined with 
regard to a possible bias of the calculated effect size in a random-effects 
model (Higgins et al., 2021). However, the present light analysis gives 
only a brief quantitative overview in advantage over a narrative review 
but cannot provide statistical evidence as a meta-analysis comparing 
bigger sample sizes. 

5. Conclusion 

The presented meta-analytic results on the relationship between 
task-evoked workload as well as light and the Index of Cognitive Activity 
extend the current state of knowledge regarding this indicator. 

Despite the ICA's reliability for task-evoked workload and sensitivity 
towards multiple difficulty levels, several ambiguities and influences 
exist which have to be considered for the analysis. The presented find-
ings reveal that certain cognitive processes are more likely to be rep-
resented by the indicator than others so that it seems likely that the 
indicator may not be an objective measure. It seems likely that the 
variance is due to the differences in information processing. To get a 
deeper insight into cognitive processes, it has to be further investigated 
which tasks are most suitable for workload analyses with the Index of 
Cognitive Activity. Moreover, the eye-tracking hardware may also play 
an important role in producing effect sizes for both workload and light, 
which cannot be explained at this point. In contrast, it does not seem to 
be important to consider the modality of stimulus and response, since 
the indicator is not likely to reflect these kinds of cognitive differences. 
Due to the moderating effect of normalization, a z-normalization of re-
sults can be recommended, according to the present results. 

In summary, the Index of Cognitive Activity is likely to be a reliable 

indicator to evaluate task-evoked workload and to distinguish different 
workload levels, although the scale metrics and influencing factors are 
still ambiguous and require further research. In this regard, one problem 
is the lack of transparency in the calculation of the ICA algorithm. The 
observed moderation effect of normalization supports this assumption. 
In order to address this problem, another pupillary-based indicator, the 
Index of Pupillary Activity (IPA) has been developed by Duchowski et al. 
(2018), which has been shown to be sensitive to changes in cognitive 
workload. The calculation is based on the ICA algorithm, but uses a 
different wavelet analysis and a different threshold calculation, which is 
described in detail. Furthermore, moderators reveal that the ICA is more 
suitable for assessing certain types of cognitive workload rather than 
others, and beyond that is likely to be dependent on the hardware. 
However, advantages over pupillary dilation concerning light influences 
could not be shown through the present meta-analysis. Thus, the Index 
of Cognitive Activity is not exclusively preferable over pupillary mea-
surements, when it comes to field investigations with changing light 
conditions. 
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Appendix A  

Table A.1 
Study Quality Assessment Scale.   

Item & category Weight 

1 Publication  
Not published  0 
Conference proceedings  1 
Peer-reviewed journal + dissertation  2 

2 Method explicitly described  
No, data missing  0 
Yes  1 

3 Randomization  
No  0 
Yes  1 

4 Independent samples  
No (within subjects)  0 
Yes (between subjects)  1 

5 Study design appropriate  
No  0 
Yesa  1 

6 Sample size  
7 N ≤ 30  
8 30 < N < 100  
9 100 ≤ N  
10 Results explicitly described  

No, data missing  0 
Yes, all data reported  1 

11 Statistical analysis appropriate  
No, not appropriate to study design  0 
Yes, appropriate to study design  1  

a Study was designed either full factorial or semi factorial with relevant factors.  
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Appendix B. Analysis of cognitive workload  

Table B.1 
Descriptive statistics of included studies concerning cognitive workload (k = 12).  

ID Author(s) (year) N Age (AM) Age (SD) Age span Male Female 

1 Bartels and Marshall (2012)  146 36 n.a. 22-55 36 75 
2 Czerniak et al. (2021)  22 28 9 20-56 8 14 
3 Dlugosch et al. (2013)  24 24 4 18-30 10 8 
4 Fairclough et al. (2009)  14 n.a. n.a. 19-39 11 3 
5 Korbach et al. (2017)  50 22 2 n.a. n.a. n.a. 
6 Korbach et al. (2018)  78 23 3 n.a. n.a. n.a. 
7 Marshall et al. (2004)  22 20 n.a. n.a. n.a. n.a. 
8 Matthews et al. (2015)  150 20 3 n.a. 85 65 
9 Platten (2012)  22 31 7 24-26 n.a. n.a. 
10 Reinerman-Jones et al. (2014)  150 20 3 n.a. 85 65 
11 Rerhaye et al. (2018)  14 n.a. n.a. n.a. n.a. n.a. 

n.a. n.a. n.a. n.a. n.a. 
12 Schwalm et al. (2008)  20 27 n.a. 23-33 10 10   

Table B.2 
Moderators of cognitive workload.  

ID Task Design Sim.a Time interval Stimulus Resp. Factor level Norm.b Eye tracker Quality 

1 MAC B  3 P V, A V  3 – EII, F5,  8 
TX, SMI 

2 MA W  1 S V V  5 – FO  6 
3 DD W  2 P V T  10 z EII  4 
4 NB W  1 S A T  6 Min F5  5 
5 L B  1 P V –  2 – TX  8 
6 L B  1 P V –  3 – TX  8 
7 MA W  1 P A V  2 – EII  6 
8 DD W  2 S V T  4 – F5  9 
9 CS W  2 n.a. V T  3 z EII  7 
10 DD W  2 S V T  4 – F5  8 
11 MR W  1 n.a. V n.a.  2 – DI  6 

S W  1 n.a. V n.a.  2 – DI 
12 FD W  2 P V, A T  3 z EII  7 

Coding: Task: mental arithmetics (MA), mental arithmetics combination (MAC), driving dual task (DD), n-back (NB), learning (L), detection dual task (DD), CTT +
SURT (CS), mental rotation (MR), Stroop (S); study design: between subjects (B), within subjects (W); time interval: paced (P), self-paced (S); stimulus: visual (V), 
auditory (A); response: verbal (V), tactile (T); eye tracker: Eye-Link II (EII), Facelab5 (F5), TobiTX 300 (TX), SMI RED 250 (SMI), Fovio (FO), Dikablis (DI). 

a Number of simultaneous tasks. 
b Normalization (z = z-transformation, min = Min/Max-normalization). 

Fig. B.1. Funnel plot “load”.  

Appendix C. Analysis of light influences  

Table C.1 
Descriptive statistics of included studies concerning light influences (k = 4).  

ID Author(s) (year) N Age (AM) Age (SD) Age span Male Female 

1 Czerniak et al. (2021)  20 26 4 19–34 11 9 
2 Kahya et al. (2018)  21 n.a. n.a. 18–29 n.a. n.a. 

(continued on next page) 
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Table C.1 (continued ) 

ID Author(s) (year) N Age (AM) Age (SD) Age span Male Female 

3 Marshall et al. (2004)  24 24 4 18–30 10 8 
4 Rerhaye et al. (2018)  14 n.a. n.a. n.a. n.a. n.a. 

n.a. n.a. n.a. n.a. n.a.   

Table C.2 
Moderators of light influences.  

ID Light source Light change Stimulus Type Quality 

1 MS S V P  8 
2 E S A C  6 
3 E S A C  6 
4 MS F V C  6 

Coding: Light source: monitor screen (MS), environment (E); light change: slowly (S), fast (F), stimulus (of task): visual (V), auditive (A); 
type: cognitive (C), perceptive (P). 

Fig. C.1. Funnel plot “light”.  

Appendix D. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.actpsy.2021.103402. 
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