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Abstract: Current telemedicine and remote healthcare applications foresee different interactions
between the doctor and the patient relying on the use of commercial and medical wearable sensors
and internet-based video conferencing platforms. Nevertheless, the existing applications necessarily
require a contact between the patient and sensors for an objective evaluation of the patient’s state.
The proposed study explored an innovative video-based solution for monitoring neurophysiological
parameters of potential patients and assessing their mental state. In particular, we investigated the
possibility to estimate the heart rate (HR) and eye blinks rate (EBR) of participants while performing
laboratory tasks by mean of facial—video analysis. The objectives of the study were focused on:
(i) assessing the effectiveness of the proposed technique in estimating the HR and EBR by comparing
them with laboratory sensor-based measures and (ii) assessing the capability of the video—based
technique in discriminating between the participant’s resting state (Nominal condition) and their active
state (Non-nominal condition). The results demonstrated that the HR and EBR estimated through the
facial—video technique or the laboratory equipment did not statistically differ (p > 0.1), and that
these neurophysiological parameters allowed to discriminate between the Nominal and Non-nominal
states (p < 0.02).

Keywords: facial video; healthcare; telemedicine; neurophysiological assessment; signal processing;
heart rate; eye blinks; mental states evaluation

1. Introduction

Nowadays telemedicine platforms are employed in a wide range of medical and clini-
cal applications, such as the diabetes management [1], asthma monitoring [2,3], chronic
disease [4,5] and age-related diseases [6,7]. According to Armaignac and colleagues [8],
telemedicine is also applied in critical care [9,10] to overcome the increasing patient de-
mands and shortage of intensivists, issues that may occur in different contexts, first and
foremost during the COVID-19 pandemic [11]. Telemedicine could be defined as the use
of technological equipment to provide a clinical and medical assistance when a phys-
ical distance separates patients and providers. Telemedicine also includes managing
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patients through monitoring devices controlled by physicians and nurses in remote lo-
cations [12], internet-based video-conferencing platforms for communicating with pa-
tients remotely [13], and asynchronous and synchronous systems for providing clinical
care through the use of wearable devices [14,15]. Besides the therapeutical applications,
telemedicine is also employed for remote monitoring of patients. The objective of this
passive branch of telemedicine is to provide a warning to clinicians or doctors when the
neurophysiological and physiological data collected from the patients indicate an adverse
clinical event [16,17]. Several studies have already demonstrated the effectiveness of
telemedicine in improving patients’ outcomes [18,19], while other studies have showed its
benefits in terms of hospitalization reduction, a crucial aspect especially during a severe
pandemic such as the COVID-19 one [11].

However, all the above mentioned telemedicine and remote healthcare concepts
require physical contact between the patient and sensors, and the need of high—qualified
personnel to set up the entire equipment and provide technical assistance to the patients.
The internet-based video-conferencing telemedicine platforms do not require physical
contact between patients and providers, although they imply a large limitation due to the
lack of sensors to evaluate the neurophysiological parameters of the patients.

The present study explored an innovative approach for the telemedicine and telemon-
itoring that aims at estimating the heart rate (HR) and the eye blinks rate (EBR) through
the analysis of the patient’s face video recorded by mean of a webcam. This video—based
technique does not require any technical support to perform the measurements, as it does
not require a physical contact between the user and the sensors. Furthermore, this kind
of methodology is not expensive as the actual technologies, i.e., medical and wearable
devices, employed in telemedicine and remote healthcare. Besides the clinical implications
related to the HR monitoring, previous work demonstrated how this neurophysiological
parameter is involved in human mental states assessment like the mental workload [20–22].
Similarly, the EBR is associated with specific mental states like the visual attention [23].
In fact, it was demonstrated that a decrease of EBR corresponds to greater processing of
information [24]. Such two aspects indicate the suitability of HR and EBR parameters for
characterizing the patient’s mental states in terms of attention and mental workload. Video-
based techniques imply the recording of the patient’s facial video consequently they cannot
be applied on patients who are not in front a video camera. The proposed technique for
HR evaluation was already explored in prior works with promising results [22,25,26], and
it is based on the modulation of the reflected ambient light from the skin by the absorption
spectrum of hemoglobin in the patient’s blood [25]. In other words, such analysis is based
on the extraction and processing of the Red component of the patient’s facial video. The
minute—color variations on the skin are created by blood circulation, and they module
the Red component of the video signal along the time. The remote EBR monitoring by
means of facial video analysis was explored in recent works too. Zhang and colleagues [26]
demonstrated the reliability of multi-channel ICA to detect eye blinks from smartphone
facial videos, while Tsujikawa in 2018 [27] evaluated the reliability of EBR estimation
from 30 frame per second (fps) facial video cameras. In this regard, the first objective
of the present study was to investigate the reliability of the video—based technique for
the simultaneous HR and EBR estimation. These neurophysiological parameters were
compared with the corresponding ones computed from the electrocardiographic (ECG)
and electrooculographic (EOG) signals gathered through laboratory equipment. Secondly,
the experimental protocol was designed to represent the situation in which the patient’s
state deviates from a resting condition. The deviation from the resting condition (nominal
condition) could play a crucial role in several telemedicine application, such as the sleep
apnea remote monitoring [28–30] and cardiovascular diseases remote monitoring while
sleeping [31], but also in operative applications involving narcoleptic patients [32] and
in emotional states discrimination, since several previous works demonstrated how the
HR and EBR parameters are involved in the emotional state modulation [33,34]. The
video–based technique has great potential in this latter application, especially in isolation
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and health emergency situations, a relevant risk factor for pathologies such as depression,
anxiety and stress [35,36]. Therefore, the present study explored and validated the video-
based method in terms of neurophysiological parameters estimation, i.e., the HR and EBR,
with respect to conventional sensors. In summary, the present work aimed at addressing
the following two experimental questions:

• Is the considered video-based technique reliable in terms of HR and EBR estimation?
• Is the considered video-based technique capable of discriminating between a nominal

and a non-nominal state of the patient?

2. Materials and Methods
2.1. Participants

Informed consent for study participation, publication of images, and to use the video
material were obtained from a group of 15 students, eight males and seven females
(30.6 ± 3.7 years old) from the Sapienza University of Rome (Italy) after the explanation of
the study. The experiments were conducted following the principles outlined in the Decla-
ration of Helsinki of 1975, as revised in 2000. The study protocol received the favorable
opinion from and has been approved by the Ethical Committee of the Sapienza University
of Rome (protocol n. 2507/2020 approved on the 04/08/2020). The study involved only
healthy participants, recruited on a voluntary basis. Furthermore, the students were free to
accept or not to take part to the experimental protocol, and all of them have accepted to
participate to the study. Only aggregate information were released while no individual
information were or will be diffused in any form.

2.2. Experimental Protocol

To simulate the switch between a nominal and a non-nominal state in this experimental
protocol, three tasks were designed:

• The n-Back (NB) task. A well-known computer-based psychological test used to
manipulate workload, or more specifically working memory load [37]. Within this
task a sequence of stimuli is presented to the user. The goal is to indicate when the
current stimulus matches the stimulus that occurred in the series n steps before. The
factor n can be adjusted to make the task more difficult or easier. A baseline and
three conditions (0-back, 2-back, and 2-back stressful) of such task were tested in
the proposed study, all of them with different levels of difficulty. In all conditions,
21 uppercase letters were used, which were displayed for 500 ms and an inter-stimulus
interval randomized between 500 to 3000 ms; 33% of the displayed letters were target.
During the baseline (1 min duration), the same 21 uppercase letters was presented to
the participants with no interaction required.

• The Doctor Game (DG). The aim of the game was to remove small objects from the
board without touching the edges. Here, a baseline and three difficulty levels were
tested too.

• Two interactive web calls (WEB) were performed. Three conditions of such task were
performed: (i) Baseline condition, in which the participants looked at the web platform
interface without reacting; (ii) Positive condition, in which the test persons were asked
to report the happiest memory of their life; (iii) Negative condition, in which the test
persons were asked to report the saddest memory of their life.

The participants went under training phases before performing each different task in
order to avoid habituation bias. Considering the two main objectives of the present work,
the different difficulty levels of the experimental tasks were not considered in the analysis.
In particular, the neurophysiological parameters evaluated during the resting state, in
which the participant rested in front of the PC screen, were referred to the Nominal condition
while the neurophysiological parameters evaluated during the remaining experimental
conditions, averaged along such conditions within each task, were referred to the Non-
nominal condition.
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2.3. Questionnaires

To validate the neurophysiological results two kinds of questionnaires were used,
which were filled in after each experimental condition. The questionnaires were explained
at the beginning of the experiment and the participants were trained to fill them before
starting with the experiments. The following questionnaires were selected:

• Self-assessment Manikin (SAM), consisting in a picture-oriented questionnaire [38]
developed to measure the valence/pleasure of the response (from positive to negative),
perceived arousal (from high to low levels), and perceptions of dominance/control
(from low to high levels) associated with a person’s affective reaction to a wide
variety of stimuli. After each experimental condition the participants were asked
to provide only three simple judgments along each affective dimension (on a scale
from 1 to 9) that best described how they felt during the condition just executed. This
questionnaire was selected to have a subjective indication about the current state of
the participants in terms of pleasure, arousal and control with the respect of each
experimental condition of WEB task.

• NASA Task Load Index (NASA-TLX), consisting of six sub-scales representing inde-
pendent groups of variables: mental, physical and temporal demands, frustration,
effort and performance. The participants were initially asked to rate on a scale from
“low” to “high” (from 0 to 100) each of the six dimensions during the task. Afterwards,
they had to choose the most important factor along pairwise comparisons [39]. The
NASA-TLX was selected for subjectively quantify the mental demand perceived by
the participants with the respect of the experimental condition of the DG and NB tasks.

2.4. Eye Blinks Signal Recording and Analysis

The EBR information were obtained by estimating the vertical electrooculographic
(EOG) activity from a traditional electroencephalography (EEG) channel [R] [40]: the
activity was recorded between a gel-based Ag/AgCl electrode placed on the participant’s
Fpz scalp location (Figure 1) and reference electrodes placed on the earlobe, connected
to the BEMicro system (EBNeuro, Firenze, Italy) with a sampling frequency of 256 (Hz).
Firstly, the signal was band-pass filtered using a 5th order Butterworth filter within the
frequency range of 2–10 Hz. In this way the recorded signal can be considered as an
estimation of the vertical EOG one. The eye blinks detection method was performed in
two main steps:

(i) Threshold calculation
(ii) Pattern Matching.

In (i) the Eyes Open condition was used to identify a threshold that when exceeded
identified a potential blink. The threshold was calculated as follows, according with the
BLINKER algorithm [41]:

Threshold = mean(EOG Eyes Open) + 3 ∗ robustStdDev (1)

where robustStdDev is the mean absolute deviation of the corresponding EOG channel. In
(ii), every time the EOG signal exceeded the computed threshold, the Pearson correlation
between a common blink template and the EOG signal was computed within each experi-
mental condition. If this value was higher than 0.9, a potential blink would be classified
as “real blink”. The EBR feature estimated for each participant in each condition was
calculated as the mean of the total number of blinks in every condition per minute.

Regarding the EBR estimation through the video-based technique, a PC webcam
(Microsoft, Albuquerque, New Mexico, USA) was used for facial video recording during
the experimental protocol (Figure 1).

The RGB camera was set to a resolution of 640 × 480 (pixel) at a frame rate of 30 (fps).
The camera was placed in front of the participant. Subsequently, the recorded video was
analyzed offline. The participant’s face was automatically identified using a specific Python
library named Dlib [42] coupled with an adaBoost classifier [43]. In particular, such library
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allowed us to select 68 facial features. Subsequently, the positions of the participant’s
eyelids were identified frame by frame. The distance between the inferior and the superior
eyelids was computed for both the eyes [44]. Then, such discrete signal was filtered
between 1 and 3 (Hz) for noise removal, and a threshold was computed as the quadratic
mean of the signal along each specific experimental condition [45]. Each event exceeding
such a threshold was finally classified as eye blink. Here too, the EBR parameter was
computed as the mean of the total number of blinks in every condition per minute. The
required processing time for computing one EBR value was 0.174 s. The main steps of the
described video—signal processing for EBR estimation are presented in Figure 2.
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Figure 2. Main steps of the video-signal processing for Eye Blinks Rate (EBR) estimation. The distance
between the eyelids is computed frame by frame. Then, filtering and the quadratic mean threshold
are applied for obtaining the eye blinks number from the raw data.

2.5. ECG Signal Recording and Analysis

The ECG signal was gathered by means of gel-based Ag/AgCl electrode fixed on the
participant’s chest (Figure 1), connected to the BEMicro system and referred to the potential
recorded at both the earlobes, with a sampling frequency of 256 Hz. First, the ECG signal
was filtered using a 5th-order Butterworth band-pass filter (1–4 Hz) in order to reject the
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continuous component and the high-frequency interferences, such as that related to the
mains power source. At the same time, the purpose of this filtering was to emphasize the
QRS process of the ECG signal [46–48]. The following step consisted in computing the ECG
signal to the power of 3 to emphasize the heartbeat peaks, as they generally have the higher
amplitude, and at the same time reduce spurious artefacts peaks. Finally, we measured the
distance between consecutive peaks (i.e., each R peak corresponds to a heartbeat) in order
to estimate the heart rate (HR) values every 60 s.

Regarding the HR estimation by means of the video–based technique, the same
participants’ facial video was analyzed. As described for the EBR estimation, the 68 visual
feature required for the facial recognition were selected using the Dlib Python library [42] in
conjunction with the adaBoost classifier [43]. This classifier was employed for the automatic
face detection and it was based on the YCbCr Color model [49,50], in order to perform
the face detection according with the luminance and chrominance variations of the video.
First, the Red (R) component was selected and extracted from the raw signal, through the
application of the fast Fourier transform (FFT) and principal component analysis (PCA).
The PCA algorithm was also applied for fluctuations removal from the R component,
technically implemented in the sklearn.decomposition.PCA Python library included in the
Scikit-Learn Python library [51]. The considered signal was gathered from the participant’s
cheeks, in each image frame, referenced to the participant’s eyes and nose [52]. Then, the
clean R component was detrended for illumination variations compensation, by mean
of the method proposed by Tarvainen and colleagues [53] based on smoothness priors
technique employing a smoothing parameter λ = 10 and a cut-off frequency = 0.060 Hz.
Subsequently, Hamming filtering (128 point, 0.6–2.2 Hz) was applied to the R detrended
component. Finally, the filtered signal was normalized using z-score [54] by the formula
provided below:

Xi =
Yi(t)− µi(t)

δi
(2)

The HR values were computed with a 60 s time resolution for each experimental
condition, considering a sliding time window of 100 image frames for each HR value. The
processing time for computing one HR value was 0.041 s. The main steps of the described
video—signal processing for HR estimation are presented in Figure 3.
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components are selected by mean of Principal Component Analysis (PCA) algorithm. The Heart Rate (HR) frequency is
extracted after detrending, filtering and fast Fourier transformation. Finally, the HR values in time domain are obtained
after z-score normalization.
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2.6. Statistical Analysis

All the considered neurophysiological parameters, i.e., the EBR and HR, were nor-
malized to obtain comparable distributions related to each sensor technology employed
in the study. The normalization consisted in the subtraction of the baselines from the
respective values estimated during each experimental condition. The statistical analysis
was performed on the normalized parameters. The Shapiro–Wilk test was performed to
determine the normality of each distribution involved in the analyses. The Student’s t-test
was used to compare normal pairs, while the Wilcoxon signed-rank test was performed if
the normality was not confirmed. For all tests, the statistical significance was set at α = 0.05.

3. Results

The results related to the DG task will not be reported because almost all the par-
ticipants got too close to the game board to accurately extract the objects causing face-
video signal loss therefore the impossibility to acquire and consequently analyze their
facial videos.

3.1. Methodology Comparison

Regarding the EBR estimation, the paired Wilcoxon signed-rank test performed on
the normalized EBR (EBR’) evaluated during the NB and WEB tasks did not show any
significant difference (Figure 4) between the video—based technique and the laboratory
technology (NB: p = 0.7; WEB: p = 0.5). The percentage difference between the EBR
estimated through the video—based technique and the laboratory equipment was 4.5%
during the NB task and 4.8% during the WEB task.
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Figure 4. The normalized EBR (EBR’) values evaluated through the video—based technique and the laboratory sensor
during the n-Back (NB) (left image) and the Webcall (WEB) (right image) tasks did not statistically differ (all p > 0.05).

The same result (Figure 5) was observed on the paired Wilcoxon signed-rank test
performed on the normalized HR (HR’) estimated during the NB and WEB tasks (NB:
p = 0.2; WEB: p = 0.4). The percentage difference between the HR estimated through the
video–based technique and the laboratory equipment was 9.3% within the NB task and
3.3% within the WEB task.

Furthermore, to investigate the reliability of the video-based technique with respect
to the laboratory technology, the repeated measure correlation (rmcorr) analysis was per-
formed. As reported in Figure 6, the rmcorr analysis [55] performed between the EBR
estimated by the laboratory and video-based technique every 60 s showed a positive
(R = 0.73) and significant (p < 10−27) correlation, as demonstration of how the two technol-
ogy provided similar EBR estimations. Similarly, Figure 6 shows a positive (R = 0.64) and
significant (p < 10−18) correlation between the HR values estimated every 60 s by means of
the laboratory and the video-based technique.
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3.2. Mental States Discrimination

The results of the Wilcoxon signed-rank test performed on the NASA-TLX reported
significant (p = 0.0005) differences among the nominal and the non-nominal conditions of
the NB task in terms of perceived mental demand (Figure 7). Similarly, the Wilcoxon
signed-rank test performed on the SAM questionnaire demonstrated a significant (p = 0.02)
increase of the perceived arousal and control between the Nominal and the Non-nominal
conditions of the WEB task (Figure 7).

As mentioned in the Introduction, the second objective of the present study consisted
in assessing the capability of the video-based technique in discriminating the participants’
state while they were in a resting state (nominal) or in an active state (non-nominal). Regard-
ing the NB task, the paired Wilcoxon signed-rank test performed on the normalized EBR
and HR estimations provided by the video-based technique (Figure 8) showed a significant
difference between the nominal and non-nominal conditions (EBR: p = 0.0002; HR: p = 0.03).
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Similarly, the paired Wilcoxon signed-rank test performed on the normalized EBR
and HR evaluated by the video-based technique during the WEB task (Figure 9) showed a
significant difference between the nominal and non-nominal conditions (EBR: p = 0.0003; HR:
p = 0.02).
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4. Discussion

The present study aimed at investigating the reliability of an innovative video—based
technique in estimating neurophysiological parameters (i.e., EBR and HR) while deal-
ing with different activities to find out if it could be a potential solution for healthcare
telemonitoring of patients. Regarding the NB and WEB tasks, the results demonstrated
the reliability of the video—based technique compared with the laboratory technology,
generally considered as the gold—standard in scientific literature [56]. Moreover, the re-
peated measure correlation analysis revealed that the video—based technique was able to
capture the considered neurophysiological parameters’ dynamics with the same capability
exhibited by the laboratory device. More importantly for future applications, the statistical
analyses demonstrated the capability of the explored video-based technique in discrimi-
nating between the nominal and non-nominal participant’s mental states. In particular, the
normalized EBR (EBR’) estimated within the NB and WEB tasks significantly decreased
during the non-nominal condition, while the normalized HR (HR’) significantly increased
during the non-nominal condition within both tasks. These evidences are consistent with
prior related works. In fact, Aricò and colleagues demonstrated the link between the EBR
decrease and the visual attention increase [57], while we already observed in a previous
study the relationship between the HR increase and the mental workload increase [22].
With respect to the two experimental tasks, subjective measures, i.e., the NASA-TLX and
SAM, demonstrated that the nominal and non-nominal conditions were actually different
in terms of mental demand, therefore validating the experimental hypothesis at the basis
of the presented analysis. Such evidences open the path to apply video–based techniques
for healthcare monitoring of patients in remote locations. In fact, such a technique does
not require any physical contact between the patient and the sensor, nor the presence of a
doctor or a facilitator for the sensors setting. In addition, the video-based technique implies
very limited costs, since it needs only a commercial webcam, compared to the existing
telemedicine platforms, which include commercial and medical wearable devices. Beyond
the telemedicine and remote healthcare applications, the explored video–based technique
could provide a valuable contribution in operative and industrial applications. To this
regard, different works [58,59] already investigated the possible algorithms to automati-
cally discriminate between the condition in which the operator is active and learning, or
the one in which the operator is resting, a crucial aspect to trigger the activation of the
artificial intelligence (AI) or support system platforms. Moreover, the presented results
demonstrated the sensibility of the video–based technique for EBR and HR estimations to
the visual attention and mental demand increases. Therefore, such a technique could offer
relevant performance operative applications where it is required the minimum interfer-
ence between the subjects and the sensors [60], in air traffic controllers’ (ATCOs) mental
workload and attention evaluations [61] and in car driver’s monitoring [62].

Limitations

Despite the promising results we should highlight some limitations. The proposed
video–based technique implies a direct visual contact between the subject and the video
recorder, a condition that could not be easy to achieve in specific context as the telemedicine
one, where the patient could not stand in front of a camera for long time period. In fact,
during the execution of the DG task the posture of almost all the participants did not allow
to acquire the participant’s face, hence to neither estimate the neurophysiological param-
eters considered nor assess the participants’ mental states. Therefore this aspect should
be carefully considered when a video–based solution would be employed. Moreover, the
investigated video–based technique could likely be sensible to illumination variations [63],
a parameter that is not always controllable. Such a limitation could be solved or at least
mitigated by using a camera featuring automatic brightness regulation for the facial video
recording. Finally, it has to be noted that the video—based technique requires specific
sensing and processing times, depending on the chosen sliding time window to perform
the measurements among the image frames and on the PC used for the analysis.
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5. Conclusions

The proposed study demonstrated the reliability of the innovative video–based tech-
nique for computing the EBR and HR neurophysiological parameters. Both parameters
evaluated through the video–based technique did not differ by more than 5%, except for
the HR evaluated during the NB task which differed by 9.3%, from the measurements
provided by laboratory equipment. In addition, the results revealed its capability in dis-
criminating between the participants’ resting state (nominal) and active state (non-nominal).
Such evidences positively answer to the two initial experimental questions, and they pave
the path to apply video—based approaches for estimating neurophysiological parameters
not only for the telemedicine and remote healthcare, where it would provide a valuable
monitoring tool for early adverse clinical events detection [64] especially in pandemic
conditions, but also to the industrial automation field, future safety-oriented [62] and
operative applications [65]. To this regard, further studies will aim at better investigating
the video–based technique sensibility in mental workload and attention discrimination
and to determine the optimal application conditions, i.e., the distance between the webcam
and the subject’s face, in terms of reliability. Moreover, the combination of both HR and
EBR for estimating the above mentioned mental states will be explored, since the merge of
these neurophysiological parameters could lead to a more accurate mental workload and
attention evaluation [66,67].
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