
Privacy Preserving Substring Search
Protocol with Polylogarithmic

Communication Cost
Nicholas Mainardi

Politecnico di Milano – DEIB

Milano, Italy

nicholas.mainardi@polimi.it

Alessandro Barenghi

Politecnico di Milano – DEIB

Milano, Italy

alessandro.barenghi@polimi.it

Gerardo Pelosi

Politecnico di Milano – DEIB

Milano, Italy

gerardo.pelosi@polimi.it

ABSTRACT
The problem of efficiently searching into outsourced en-

crypted data, while providing strong privacy guarantees,

is a challenging problem arising from the separation of data

ownership and data management typical of cloud-based ap-

plications. Several cryptographic solutions allowing a client

to look-up occurrences of a substring of choice in an out-

sourced document collection have been publicly presented.

Nonetheless, practical application requirements in terms of

privacy, security and efficiency actively push for new and im-

proved solutions. We present a privacy-preserving substring

search protocol exhibiting a sub-linear communication cost,

with a limited computational effort on the server side. The

proposed protocol provides search pattern and access pattern

privacy, while its extension to a multi-user setting shows

significant savings in terms of outsourced storage w.r.t. a

baseline solution where the whole dataset is replicated. The

performance figures of an optimized implementation of our

protocol, searching into a remotely stored genomic dataset,

validate the practicality of the approach exhibiting a data

transfer of less than 200 kiB to execute a query over a docu-

ment of 40 MiB, with execution times on client and server in

the range of a few seconds and a few minutes, respectively.

CCS CONCEPTS
• Security andprivacy→Privacy-preserving protocols;
Management and querying of encrypted data; Security
protocols.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7628-0/19/12. . . $15.00

https://doi.org/10.1145/3359789.3359842

KEYWORDS
Secure substring search, Cryptography, Homomorphic en-

cryption, Privacy-preserving protocol

ACM Reference Format:
Nicholas Mainardi, Alessandro Barenghi, and Gerardo Pelosi. 2019.

Privacy Preserving Substring Search Protocol with Polylogarithmic

Communication Cost. In 2019 Annual Computer Security Applica-
tions Conference (ACSAC ’19), December 9–13, 2019, San Juan, PR,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/

3359789.3359842

1 INTRODUCTION
Current trends and innovations in the information technol-

ogy scenario have prompted users and organizations to store

a growing amount of sensitive data in a third party located

cloud, beyond their direct control. In such a scenario, com-

panies rely on the cloud for data storage and management,

profiting from low storage costs and high availability, while

end-users enjoy ubiquitous availability of data, which can

also be accessed via mobile devices. However, such benefits

come with a loss of control of the data itself and the concrete

possibility of privacy and security information leakages.

In this paper, we consider the popular cloud computing

model composed by three entities: the data owner, the cloud

server and the users authorized to access the remotely stored

data. The data owner stores the data on the cloud server

and authorizes the users to issue specific queries on the out-

sourced data. To protect the data, the data owner encrypts the

data before outsourcing them and shares the decryption keys

with the authorized users only. However, data encryption is

a major hindrance to perform data access operations, such

as searching for a given pattern, with the same efficiency

provided by the ones acting on data stored and maintained

on premise. Therefore, there is a pressing need for effec-

tive solutions enabling a set of querying functionalities on

encrypted data, possibly by multiple users, preserving the

confidentiality of the searched information even against the

service (storage) provider itself.

https://www.acsac.org/2019/
https://doi.org/10.1145/3359789.3359842
https://doi.org/10.1145/3359789.3359842
https://doi.org/10.1145/3359789.3359842


ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

Table 1: Comparison of existing privacy-preserving substring search protocols with our protocol. In the table,
n denotes the size of the document collection, m the length of the queried substring q, and oq the number of
occurrences of q found
† the asymptotic cost in [16] hides a large constant factorC, e.g.,C≥16×106, for providing 80-bit security parameters

Protocol Communication Server Search & Access Data Owner Extension to AdversaryCost Cost Pattern Privacy Off-line multi-user

[30] O(n) O(nm) ✓ ✓ × Semi-honest

[25] O((m + oq )
√
n) O((m + oq )n) ✓ ✓ × Semi-honest

[16] O(C(m + oq ) log(n))
† O(C(m + oq )n logn)

† ✓ ✓ × Semi-honest

[10] O(m + oq ) log(n) Ω( nm + oq ) log(n) × × ✓ Malicious

[22] Ω(m log
5(n) + oq log

2(n)) Ω(m log
5(n) + oq log

2(n)) ✓ ✓ × Semi-honest

Ours PPSS O((m + oq ) log
2(n)) O(m + oq )n ✓ ✓ ✓ Semi-honest

Problem Statement. A data owner outsources a set of doc-

uments D = {D1, . . . ,Dz }, z ≥ 1, encrypted with a cryp-

tographic primitive of choice, where each document is a

sequence of symbols (string) over an alphabet Σ with length

len(Di ) and n=
∑z

i=1 len(Di ). In addition, the data owner

builds an indexing data structure to enable the search for

any substring q ∈ Σ∗, len(q)=m ≥1, over D. A query for a

substring q will yield, for each document Di , 1 ≤ i ≤ z, the
set of positions, Si , where an occurrence of q appears. Along

with the collection of documentsD, the data owner stores on
the remote storage a privacy-preserving representation of the

aforementioned indexing data structure allowing authorized

clients to use the substring search functionality with the

cooperation of the service provider. The main challenge in

this scenario is reducing the information learnt by an adver-

sary (including the service provider) to the knowledge of

the size of the outsourced document collection, the size of

the substring, the one of the indexing data structure and the

total number of occurrences matching the query at hand. We

remark that the private retrieval of the matching documents

from the remote storage is out of scope in the problem ad-

dressed by this paper, as this functionality can be achieved

by hinging upon existing cryptographic primitives such as

Oblivious RAMs (ORAMs) [27] or Private Information Re-

trieval (PIR) protocols [19].

Adversary and Security Model. In a real-world deploy-

ment of a privacy-preserving substring search solution, the

notion of semi-honest adversary fits well entities that trust-

worthy follows the protocol specification, although being

curious about any other additional information that may

be inferred with a polynomial computation effort about the

confidential data as well as the access patterns or the search
patterns on the remote data storage. Informally, a search

pattern refers to the understanding of how similar distinct

queries are (e.g., if they share a common prefix or only some

non consecutive symbols), while access pattern refers to the

understanding of the positions of replicas of the queried

substring in D.
Prior Art Approaches. The seminal work on searching

over data in an encrypted state [26] (a.k.a. searchable en-
cryption schemes) as well as many of the subsequent im-

provements in terms of computational and communication

resources [3, 8], relies on pre-registering searchable key-

words, and does not allow free form searching over the en-

crypted data. Such a limitation is overcome by substring
searchable encryption schemes [6, 15, 18, 28]. These schemes

exhibit computation/communication complexities linear or

quadratic in the length of the searched substring, with dif-

ferent server side storage savings and assumptions on the

adversary capabilities. While these solutions coped with the

problem of substring search, the works in [6, 18, 28] do not

provide protection of search and access pattern, while the

information leakage shown in [15] is not explicitly framed

as a search or access pattern one. The importance of pro-

tecting both the search and access pattern is demonstrated

by [5, 24], where the authors describe the recovery of either

a significant portion of the documents in the collection D or

the content of the queried substrings by combining search

and access pattern leakages with public information related

to the application domain itself.

Contributions. Substring searchable encryption schemes [6,

15, 18, 28] employ symmetric-key or order-preserving cryp-

tographic primitives, obtaining good performance figures

in terms of required bandwidth, computational power, and

storage demands on both clients and servers. However, they

do not take into account the information leakage coming

from the observation of both search and access patterns.

The higher security guarantees resulting from the inclu-

sion of such leakages in the security model comes along with

the usage of cryptographic primitives with higher computa-

tional complexity. We refer to substring search schemes pre-

serving search and access pattern confidentiality as privacy-
preserving substring search (PPSS) protocols.



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

In the following, we describe the first multi-user PPSS

protocol secure against semi- honest adversaries, with an

O(m log
2 n) communication cost between client and service

provider. We combine the working principles of the Bur-

rows Wheeler Transform (BWT) [4] (as a method to perform

a substring search) with a single server private informa-

tion retrieval (PIR) protocol; specifically, we choose the PIR

proposed by Lipmaa in [19], which is based on the general-

ized Pailler homomorphic encryption scheme [9], because

of its limited communication cost. The solution exhibits an

O(m log
4 n) computational cost and requires O(logn) mem-

ory on the client side, while the computational and stor-

age demands on the service provider side amount to O(mn)
and O(n), respectively. In a multi-user scenario, our PPSS

protocol allows distinct and simultaneous queries on the

same document collection, run by multiple clients without

any interaction with the data owner and among themselves.

Our multi-user approach avoids to replicate the outsourced

document collection for each authorized client, limiting the

additional memory required by each query toO(log2 n) cells.

2 RELATEDWORK
In [30], the authors describe a PPSS protocol to establish

if a given substring is present in the outsourced document

collection with an O(n) communication cost and an imprac-

tical O(n) amount of cryptographic pairing computations

required at the client side for each query. Shimizu et. al.
in [25] described how to use the BurrowsWheeler Transform

(BWT) [4] and Pailler’s additive homomorphic encryption

(AHE) scheme [23] to effectively retrieve the occurrences

of a substring. The main drawback of the scheme lies in

the significant communication cost: each query needs to

send O(m
√
n) ciphertexts from client to server. Such a cost

was reduced by Ishimaki et. al. [16] to O(m log(n)), at the
price of employing a fully homomorphic encryption (FHE)

scheme [13], making their solution unpractical. Indeed, FHE

schemes generally require ciphertexts bigger than the ones

exhibited by Pailler AHE scheme, introducing a significant

constant factor in the communication cost. Moreover, the

computational cost for the server isO(mn log(n)), which also
hides a large constant overhead (about 10

6
) required to com-

pute on FHE ciphertexts.

A multi-user protocol, preserving only the search pattern

confidentiality and with communication cost linear in the

size of the searched substring is described in [10]. The main

drawbacks of this solution are the need for the client to

interact with both the data owner and the server to perform

a query, and the constraint that only substrings of a fixed

length, which must be decided when the privacy preserving

indexing data structure to be outsourced is built, can be

queried, in turn limiting the impact of the solution.

Finally, the suffix-array based solutions proposed byMoataz

et. al. in [22] guarantee the confidentiality of the content of

both the substring and the outsourced data, as well as the

privacy of the access pattern and the search pattern observed

by the server. The access pattern to the outsourced indexing

data structures is concealed by employing an ORAM data

structure [27] – which is specifically designed to obliviously

access a remote data storage without leaking search and ac-

cess patterns. The asymptotic complexities of the protocol

showed in [22] mainly depends on the size of each document

being negligible w.r.t. the total number of them (denoted

as z). Indeed, it exhibits O(m log
3(z)) communication and

computation complexities, assuming that the size of each

document is O(log2(z)). If the size of each document is not

negligible w.r.t. their total number, the computational and

communication cost of the solution increase proportionally

to the size n of the document collection, by (at least) a factor

log
2(n). We show in Table 1 a concise comparison between

our PPSS protocol and the state-of-the-art solutions we have

just described.

3 PRELIMINARIES
In the following, we describe the basic algorithms and cryp-

tographic primitives employed in this work, detailing their

features and pointing out the properties needed to define

our privacy-preserving substring search (PPSS) protocol.

3.1 Substring Search with BWT
The Burrows-Wheeler Transform (BWT) [4] was designed

to compute a transformation of a given text (string), s , to
make it more compressible by run-length encoding methods.

It computes an invertible permutation of the string at hand,

L = BWT(s), that can be efficiently compressed if letters of

the alphabet Σ have repetitions in the string s , regardless of
their position. The BWT computation has a time complexity

that is linear in the string length n.
Besides its usefulness as a preprocessing for compression,

the BWT enables a very efficient substring search algorithm

when combined with the so-called suffix array, i.e., the array
of starting positions of all sorted suffixes of a string [11]. The

substring search algorithm has a linear time complexity in

the length of the substring to be searched for, and requires

only a limited storage overhead. Consider a string s with
length n defined over an alphabet Σ ∪ {$}, where the end-of-
string delimiter $ precedes any character in Σ, for any order

relation of choice (e.g., the alphabetical one). We denote

with an increasing numerical subscript the occurrences of

the same character in s (e.g., a1,a2 will denote the first and
second occurrence of a in s) and define as index of a substring
in s the position of its leading character in the original string,

counting from 1 onwards.



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

String Index

a1 l1 f1 a2 l2 f2 a3 $ 1

l1 f1 a2 l2 f2 a3 $ a1 2

f1 a2 l2 f2 a3 $ a1 l1 3

a2 l2 f2 a3 $ a1 l1 f1 4

l2 f2 a3 $ a1 l1 f1 a2 5

f2 a3 $ a1 l1 f1 a2 l2 6

a3 $ a1 l1 f1 a2 l2 f2 7

$ a1 l1 f1 a2 l2 f2 a3 8

F String L SA

$ a1 l1 f1 a2 l2 f2 a3 8

a3 $ a1 l1 f1 a2 l2 f2 7

a2 l2 f2 a3 $ a1 l1 f1 4

a1 l1 f1 a2 l2 f2 a3 $ 1

f2 a3 $ a1 l1 f1 a2 l2 6

f1 a2 l2 f2 a3 $ a1 l1 3

l2 f2 a3 $ a1 l1 f1 a2 5

l1 f1 a2 l2 f2 a3 $ a1 2

sorting

Figure 1: BurrowsWheeler Transform L and Suffix Ar-
ray SA of the string alfalfa

As shown in Figure 1, taking as an example s = alfalfa$,
first the BWT computation mandates to build a list of n + 1
strings obtained performing a cyclic shift of s by all the

amounts in {0, 1, . . . ,n}. Each of these n + 1 strings contain
the suffixes of s , represented by the portion of the shifted

string preceding the string delimiter $, whose indexes are

also computed and stored. The list of n + 1 shifted strings is

then sorted lexicographically, and the BWT of s , L = BWT(s),
is derived concatenating the trailing characters of each string

in the sorted list. The suffix array, SA, associated to L is built

by storing the indexes of the cyclic shifts of s in the sequence

defined by the sorting step.

Given L and SA, the inverse BWT transform, allows to re-

construct the original string s = BWT−1(L) and also to lookup
for the occurrences of a given substring. Note that, the string

F , i.e., the concatenation of the leading characters of the

sorted list of suffixes employed to compute the BWT (in blue

in Figure 1) can also be obtained concatenating s[SA[j]] for
all 1≤j≤n+1, i.e., F [j] = s[SA[j]]. We outline some useful

properties of the strings L and F in the following statement:

Theorem 3.1. Consider a string s , with length n + 1, over
the alphabet Σ ∪ {$} and $ as trailing character. Denote the
BWT of s as L = BWT(s), its suffix array as SA and as F the
string F [j] = s[SA[j]] with 1≤j≤n + 1. Denoting the position
of a character c ∈ Σ in F and L as posF (c) and posL(c), respec-
tively, the following properties hold:

(1) Characters in the same position in L and F are consecu-
tive in the original string s : ∀c ∈ s(posL(c) = posF (succs (c))).
(2) All the occurrences of the same character appear in

the same order in both F and L, i.e., for each pair of occur-
rences ⟨c1, c2⟩ of the same character: posF (c1)<posF (c2) ⇔
posL(c1)<posL(c2).

(3) Consider two occurrences of the same character c in L,
denoted by c1, c2, where posL(c1) < posL(c2). If no occurrence
c3 of c such that posL(c1) < posL(c3) < posL(c2) exists, then
posF (c2) = posF (c1) + 1.

Proof. (1) follows directly from BWT construction, as the

characters F [i], L[i], 1≤i≤n+1, are consecutive characters

in one of the cyclic shifts of the original string. Concerning

(2), we observe that since F is constructed by concatenat-

ing the first characters of the sorted cyclic shifts of s , then
posF (c1) < posF (c2) ⇔ posF (succs (c1)) < posF (succs (c2)).
Due to (1), posL(c) = posF (succs (c)), thus
posF (succs (c1)) < posF (succs (c2)) ⇔ posL(c1) < posL(c2),
which proves (2). Finally (3) is proven by contradiction. As-

sume there is no c3 such that posL(c1) < posL(c3) < posL(c2)
with posF (c2) − posF (c1) , 1. As F contains a sorted se-

quence of characters in s , having posF (c2) > posF (c1)+1
implies the existence of a further occurrence, c3, between
the two, posF (c2)>posF (c3)>posF (c1). Property (2) implies

posL(c2)>posL(c3)>posL(c1), contradicting the hypothesis. □

Relying on the previous theorem, Algorithm 1 computes

the number of occurrences of a substring q with lengthm
in a string s with n characters, taking as input three data

structures and the substring to be searched.

The first data structure replaces L, the BWT of s , with a

(|Σ| + 1) × (n + 1) integer matrixM indexed by a character

c in Σ ∪ {$} and an integer i , storing in each cell M[c][i]
the number of occurrences of c in the string L[1], . . . , L[i].
The second data structure is a dictionary Rank of size |Σ|+1,
with pairs ⟨c, l⟩, where c∈Σ, and l , 0≤l≤n+1, is the number

of characters in s alphabetically smaller than c . The third
one is the suffix array SA of s .
The substring search procedure looks for the characters

in q starting from the last one, i.e., q[m], moving backwards

towards q[1]. In the algorithm, a run of equal characters

in F is tracked by α+1 and β which denote the positions

of the first and the last of them in F . Starting from q[m],
and the corresponding values for α and β (lines 1–2), the

algorithm looks for all the occurrences of q[m−1] followed
by q[m] in s (lines 4–6) to update α+1 and β with the first

and last positions in F of the leading character of the sub-

string q[m−1,m]. In particular, all the repetitions of q[m−1]
among the predecessors of q[m] in s = BWT−1(L) coincide
with the repetitions of q[m−1] in L[α + 1, . . . , β] (property
(1) in Thm. 3.1). Denote the first and last repetition ofq[m−1]
in L[α +1, . . . , β] as q[m−1]first and q[m−1]last. Note that,
thanks to property (3) in Thm. 3.1, the repetitions of q[m−1]
in the unsorted string L[α+1, . . . , β] correspond to the subse-
quence of consecutive characters in F with positions between

α+1=posF (q[m−1]first) and β=posF (q[m−1]last).
The value posF (q[m−1]first) can be obtained adding to

the position of the leading character in F (i.e., 1) the number

r = Rank(q[m−1]) of characters in s smaller than q[m−1]
(i.e., the number of characters preceding any repetition of

q[m−1] in F ), and the number of repetitions of q[m−1] with
smaller positions in F than q[m − 1]first. As by property (2)

in Thm. 3.1, the latter quantity equals M[q[m−1]][α] thus,
line 5 in Alg. 1 correctly updates α .



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

Algorithm 1: Substring search
Input:M , matrix representation of the BWT L of a given

n-character string s;M[c][i] stores the number of

occurrences of the character c∈Σ in the string

L[1], . . . , L[i], 1≤i≤n.
Rank, dictionary of size |Σ|+1, of pairs⟨c, l⟩, with
c∈Σ, l=Rank(c), 0≤l≤n+1 number of chars in s
smaller than c .
SA, suffix array with length n+1 of the string s;
q, a substring with length 1 ≤ m ≤ n.

Output: Rq , set of positions in s with the leading character

of every repetition of q.
1 c ← q[m]

2 α ← Rank(c), β ← α +M[c][n + 1]

3 for i ←m − 1 downto 1 do
4 c ← q[i], r ← Rank(c)

5 α ← r +M[c][α]

6 β ← r +M[c][β]

7 Rq ← ∅

8 for i ← α + 1 to β do
9 Rq ← Rq ∪ {SA[i]}

10 return Rq

Analogously, posF (q[m−1]last) can be obtained by adding

to the position of the leading character in F (i.e., 1) the num-

ber r = Rank(q[m−1]) of characters in s smaller than q[m−1]
(i.e., the number of characters preceding any repetition of

q[m−1] in F ), and the number of repetitions of q[m−1] with
smaller positions over F than q[m−1]last. By property (2)

in Thm. 3.1, the latter quantity equalsM[q[m−1]][β] − 1 as
the count given byM[q[m−1]][β] includes also q[m−1]last.
Thus, Alg. 1 at line 6 correctly updates β .

Note that, in case q[m−1] is not in L[α + 1, . . . , β], then
M[q[m− 1]][α] = M[q[m− 1]][β] thus, α and β are correctly

updated to the same value.

At the end of the first iteration of the loop, β−α amounts

to the number of repetitions of the substring q[m−1,m] in
s . In the next iteration the values α+1, β are updated with

the positions in F of the first and last repetition of the lead-

ing character of q[m−2, . . . ,m]. The algorithm proceeds in

such a way to compute during the last iteration the values

of α+1 and β referring to the first and last positions in F
of the leading character of the whole substring q[1, . . . ,m]
thus obtaining the number of occurrences of q, denoted as

oq , i.e., oq=β−α . Then, exploiting the fact that F [i]=s[SA[i]],
1≤i≤n + 1, the set Rq of integers in SA[j] with α+1≤j≤β ,
includes the position of the leading character of each repeti-

tion of q in s . In Alg. 1 lines 7–9 computes Rq following the

mentioned observation.

In Alg. 1, the time and space complexities to find the num-

ber of repetitions of a substring q with lengthm amounts, re-

spectively, to 4m−1 memory accesses, i.e.,O(m), andO(|Σ|n).

The computation of the set of positions of the leading char-

acters of repetitions of q in s increases the time complexity

up to O(m + oq).

Substring Search over a Collection of Documents. The
problem of finding the repetitions of a substringqwith length
m over a set of z ≥ 1 documents D = {D1, . . . ,Dz }, can be

solved considering a string s obtained as the ordered concate-
nation of all documents, each terminated by an end-of-string

character i.e.: s = D1$D2$ . . .Dz$, and returning a set of

pairs ⟨doc, off⟩, where doc is the identifier of the document

where the repetition of q is found, and off is the position

of the said replica into the document. Therefore, it is easy

to adapt Alg. 1 also to this multi-document scenario. Specif-

ically, Alg. 1 takes as input a matrix M derived from the

BWT of s , the dictionary Rank over the alphabet Σ and an

augmented suffix array SA storing for each cell SA[j], with
1≤j≤n+1 and n = len(s), a pair of values ⟨doc, off⟩.

Alg. 1 correctly computes the solution by recognizing

all the repetitions of q in D1, D2, . . . ,Dz separately. Indeed,

the interleaving of the end-of-string delimiters with the se-

quence of documents during the construction of s guarantees
that no substring matching across two adjacent documents

is considered. Thus, the application of Alg. 1 with a prop-

erly prepared input returns a result equivalent to running it

separately over each document.

3.2 Cryptographic Building Blocks
Definition 3.2 (Additive Homomorphic Encryption). An ad-

ditive homomorphic encryption (AHE) scheme is a tuple of

four polynomial time algorithms (KeyGen, E, D, Add):

• (pk, sk, evk) ← KeyGen(1λ) is a probabilistic algorithm
which, given the security parameter λ, generates a pub-
lic key pk , a secret key sk and a public evaluation key

evk used to perform the homomorphic operation.

• c ← E(pk,m), denoted also as Epk (c), is a probabilistic
algorithm which, given the public key pk and a plain-

text value m ∈ M, where M denotes the plaintext

space of the scheme, encrypts the message to a cipher-

text c ∈ C, where C denotes the ciphertext space.

• m ← D(sk, c), denoted also as Dsk (c), is a determin-

istic algorithm which, given the secret key sk and a

ciphertext c ∈ C, recovers the plaintext valuem ∈ M.

• cadd ← Add(evk, c1, c2), the homomorphic-addition

primitive, is a deterministic algorithm which, given

the evaluation key evk and two ciphertexts c1, c2 ∈
C, computes the homomorphic addition of the two

ciphertexts, which is a ciphertext cadd ∈ C.

For every key (pk, sk, evk) generated by the KeyGen algo-

rithm, the encryption, decryption and homomorphic addi-

tion algorithms satisfy the following correctness properties.



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

Decryption Correctness: ∀m ∈ M(Dsk (Epk (m)) =m)

Addition Correctness: ∀m1,m2∈M(Dsk (Add(evk,
Epk (m1), Epk (m2)))=m1+m2), wherem1+m2 represents

the addition in the plaintext spaceM.

AnAHE scheme allows to perform another operation HybridMul,
which we call hybrid homomorphic multiplication, as follows:
given a generic ciphertext c = Epk (m) ∈ C and an integer

h ≥ 1, HybridMul computes a ciphertext chmul that is an

encryption ofm · h. Formally:

∀m ∈ M,h ≥ 1(Dsk (HybridMul(evk,h, Epk (m))) =m · h)

This operation can be efficiently implemented via a double-

and-add strategy which employs O(logh) homomorphic ad-

ditions.

Definition 3.3 (Flexible Length Additive Homomorphic En-
cryption). An AHE scheme is defined as a flexible length

additive homomorphic encryption (FLAHE) scheme if it is

augmented with an additional parameter l ≥ 1, called length,
which specializes the definition of the plaintext and cipher-

text spaces, and of the encryption, decryption and homomor-

phic addition operations, such that:

∀l1, l2 ∈ N(l1 < l2 ⇒ C
l1 ⊂ Ml2 )

where the superscript l1 (resp. l2) is employed to specify the

plaintext and ciphertext spaces for length l1 (resp. l2). There-
fore, the expression Cl1 ⊂ Ml2

indicate that ciphertexts in

Cl1 are valid plaintexts for ciphertexts in Cl2 (i.e., a cipher-

text in Cl1 is a valid output of the decryption algorithm fed

with an element of Cl2 ).

Paillier FLAHE Scheme. Proposed in 1999 [23], it is a pub-

lic key AHE scheme based on the Composite Residuosity Class
Problem, which is polynomially reducible to the Integer Fac-
toring Problem. The plaintext space of this scheme isM =

ZN , with N computed as the product of two large primes,

while the ciphertext space is C = Z∗N 2
⊂ ZN 2 , i.e., the subset

of all and only elements of ZN 2 with a multiplicative inverse

modulo N 2
. The key generation algorithm computes the

public pk and private key sk , with the public evaluation key

evk = pk . The Paillier scheme is semantically secure, which

intuitively means that it is computationally unfeasible to de-

termine if two ciphertexts encrypt the same plaintext or not.

Given the ciphertexts c1, c2 ∈ ZN , the homomorphic addition

is defined as: ∀m1,m2 ∈ ZN (Dsk (Epk (m1) · Epk (m2) mod N 2)

=m1+m2 mod N ).

Therefore, the result of an hybrid homomorphic multiplica-

tion HybridMul is obtained as an exponentiation of a cipher-

text c to an integer. It can also be conceived as the encryption
of the product of two plaintexts:

∀m1,m2 ∈ ZN (Dsk (Epk (m1)
m2

mod N 2) =m1 ·m2 mod N )

By combining the homomorphic addition and the HybridMul
operation, the Paillier scheme allows to perform a dot product
between a cell-wise encrypted array, denoted as ⟨A⟩, and an

unencrypted one B, as:

Dsk

(
n∏
i=1

(⟨A⟩[i])B[i] mod N 2

)
=

n∑
i=1

A[i] · B[i] mod N

An FLAHE variant is described in [9] where the plaintext and

ciphertext spaces are specialized on the size of their elements

as follows:Ml = ZN l , and Cl = Z∗N l+1 .

Given two lengths l1, l2, with l1 < l2, the hybrid homo-

morphic multiplication HybridMul between a ciphertext in

Z∗
N l

2
+1
and one in Z∗

N l
1
+1
, equals the encryption of the prod-

uct between the plaintext value in ZN l
2
(enciphered by the

first operand) and the latter ciphertext (being Z∗
N l

1
+1
⊂ ZN l

2
).

Indeed, ∀m1 ∈ ZN l
1
,m2 ∈ ZN l

2
:

Dl2sk

(
El2pk (m2)

E
l
1

pk (m1)
mod N l2+1

)
=m2 · E

l1
pk (m1) mod N l2

where the superscript l1 (resp. l2) denotes that the encryp-
tion and decryption operations are performed for plaintext

and ciphertext spacesMl1
and Cl1 (resp.Ml2

and Cl2 ). This

homomorphic operation is at core of the Private Information
Retrieval (PIR) protocol introduced by Lipmaa in [19], which,

in turn, is an important building block of our PPSS protocol.

3.3 Lipmaa’s PIR Protocol
Given an array A with n elements, each encoded with ω
bits, stored on a remote server, a PIR protocol allows a client

to retrieve the element in the h-th cell, 0≤h≤n−1, with the

server being able to determine which element was selected

with probability at most
1

n .

A draft description of the PIR in [19] assumes that both

the client and the server read the positions of the cells of

the array in positional notation with radix b ≥ 2, i.e., an

index h is represented by the sequence of t=⌈logb (n)⌉ digits
in {0, . . . ,b−1} such that h=

∑t−1
i=0 hib

i
. The request of the

array element at position h is performed in t communica-

tion rounds. First, the client asks the server to select all the

cells having the least significant digit of the b-radix expan-
sion of their positions equal to h0 to compose a new array

Ah0 concatenating the selected cells in increasing order of

their original position, i.e., Ah0 [j]=A[j · b + h0], 0≤j≤
⌈n
b

⌉
−1.

In the next round, the client asks to select the cells in Ah0
having the least significant digit of the b-radix expansion

of their positions equal to h1, constructing an array Ah1
as Ah1 [j]=Ah0 [j·b+h1] = A[j ·b2+h1·b+h0], 0≤j≤

⌈ n
b2

⌉
−1. The

next rounds continue employing the subsequent digits of h
with the same logic until, in the last round (i.e., the t-th one),

a single cell (the h-th one) is identified by the server.



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

In the proper, fully private, PIR protocol [19], the client ini-

tially generates a public/private Paillier FLAHE keypair (pk ,
sk) with a public modulus N≥2ω , and shares pk with the

server. The protocol is defined by three procedures:

PIR-trapdoor and PIR-retrieve, executed at client side,

and PIR-search, executed at server side.

PIR-Trapdoor procedure. The PIR-trapdoor procedure

takes as input the public key pk , an integer b ≥ 2, and the

remote array index h referring to the item that must be re-

trieved. The output value is an “obfuscated” version of h, de-
noted as ⟨h⟩. The first step of the trapdoor computation con-

siders the value h as the sequence of t=⌈logb (h)⌉ digits in b-
radix positional representation. Each digit hi with 0≤i≤t−1,
is encoded as a bit-string hdigiti , with length b, constructed
as hdigiti [x]=1 if x=hi , 0 otherwise, x∈{0, . . . ,b−1}. Then,
each bit hdigiti [x], x∈{0, . . . ,b−1} of the string hdigiti is
considered as a plaintext in ZN l , l=i+1 and is encrypted into
a ciphertext in Z∗

N l+1 . Thus, the bit-wise encryption of the

b-bit string hdigiti is given as the concatenation of b cipher-

texts in Z∗
N l+1 . The “obfuscated” version of h, ⟨h⟩, is returned

as the concatenation of the bit-wise encryptions of each b-bit
string in the sequence hdigit

0
, hdigit

1
, . . . , hdigitt−1, with

total size b log2b (n) log(N ) bits. The computational cost of the

PIR-trapdoor procedure amounts to O(b log3(N ) log4b (n))
bit operations, assuming the use of modular multiplication

quadratic in the size of the operands.

PIR-search procedure. The PIR-search procedure, run at

server side, takes as input the obfuscated value of h, ⟨h⟩ and
the value of the radix b from the client, as well as the ar-

ray A of items to be accessed, and returns a ciphertext that

will be decrypted by the client as the content of A[h]. The
search steps executed at server side follows the t-iterations
over the array A reported in the draft description of the PIR

protocol. In particular, in the first iteration, the server com-

putes an encrypted array ⟨Ah0⟩ with ⌈
n
b ⌉ items, where each

entry ⟨Ah0⟩[j], 0≤j≤⌈
n
b ⌉−1 is a ciphertext in Z∗N 2

encrypt-

ing the item A[j · b + h0] (i.e., Dsk (⟨Ah0⟩[j])=A[j ·b+h0]). To
this end, each item ⟨Ah0⟩[j] is computed as the homomor-
phic dot product between the sub-array A[j·b,. . . ,j ·b+b−1],
whose entries are plaintexts in ZN , and the bit-wise encryp-

tion of the b-bit string hdigit
0
, whose b ciphertexts are in

Z∗N 2
. In the second iteration, the server constructs an array

⟨Ah1⟩ with ⌈
n
b2
⌉ items, where the ⟨Ah1⟩[j] item 0≤j≤⌈ nb2

⌉−1

is computed as the homomorphic dot product between the sub-
array ⟨Ah0⟩[j · b], . . . , ⟨Ah0⟩[j · b + b − 1], whose entries are
ciphertexts in Z∗N 2

, and the bit-wise encryption of the b-bit
string hdigit

1
, whose b ciphertexts are in Z∗N 3

. Specifically,

this dot-product is computed by combining the homomor-

phic addition and HybridMul of the FLAHE Paillier scheme

in the same fashion showed for the AHE Paillier scheme, i.e.,

⟨Ah1⟩[j]=Π
b−1
z=0hdigit1[z]

⟨Ah
0
⟩[j ·b+z]

mod N 3
. The result of

this dot-product is a ciphertext in Z∗N 3
which encrypts the

item ⟨Ah0⟩[j · b + h1]. As the latter element is a ciphertext

itself, then ⟨Ah1⟩[j] is a double-layered ciphertext, that is the
item A[j·b2+h1·b+h0] could be obtained by decrypting twice

the ciphertext ⟨Ah1⟩: i.e.,A[j ·b
2+h1·b+h0]=Dsk (D

2

sk (⟨Ah1⟩[j])).
After t=⌈logb (n)⌉ iterations, the server computes a single

t-layered ciphertext ⟨Aht−1⟩ and sends it back to the client,

who in turn must decrypt it t times to derive the target value

A[h]. The computational cost of the PIR-search procedure

amounts toO(nb log
3(N )) bit operations to compute a cipher-

text with ⌈logb (n)⌉ log(N ) bits.

PIR-Retrieve Procedure. This procedure, run at client side,
employs the secret key sk to decrypt the ciphertextAht−1 com-

puted by the PIR-Search procedure, obtaining the requested
element A[h].

SinceAht−1 is a t-layered ciphertext, then the client must re-

move all these t encryption layers by decrypting t times with

decreasing length: i.e., A[h] = Dsk ( D
2

sk ( . . . D
t
sk ( ⟨Aht−1⟩ ) ) ).

The computational cost of the PIR-Retrieve amounts to

O(log5b (n) log
2(N )) bit operations to derive the target value

A[h]. Lastly, the communication cost of the described single-

round PIR-protocol amounts to O(log(N )b log2b (n)) bits sent
from client to server, and toO(log(N ) logb (n)) bits sent from
server to client.

4 PROPOSED PPSS PROTOCOL
Definition 4.1 (Substring Search Functionality). Consider

a collection of z≥1 documents D = {D1, . . . ,Dz }, each in-

tended as a string of len(Di ), 1≤i≤z, symbols of the alphabet

Σ, stored on the server, and a query string q∈Σm ,m≥1, pro-
vided by the client.

The substring search functionality computes the number

of occurrences of q in each document of D, that is the set
OD,q =

⋃z
i=1ODi ,q , where

ODi ,q={ 1≤j≤len(Di )−m+1} | q=Di [j], . . . ,Di [j+m−1] }

A privacy-preserving substring search (PPSS) protocol

allows the server to provide the functionality specified in

Definition 4.1 without learning the content of the document

collection, D, the value of the substring q and the positions

in OD,q , as well as guaranteeing search and access pattern

privacy. To this end, the protocol needs to hide all these data

by employing privacy-preserving representations. We will

denote the privacy-preserving representation of a datum by

enclosing it in square brackets (e.g., [[D]]).

Definition 4.2 (PPSS Protocol). A PPSS protocol P for a set

of z ≥ 1 documents D = {D1, . . . ,Dz } over an alphabet Σ, is
a pair of polynomial-time algorithms P = (Setup, Query).
The setup procedure: ([[D]],auxs ) ← Setup(D, 1λ), is a
probabilistic algorithm, run by the client, taking as input the



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

security parameter λ and the document collection D, and re-

turning its privacy-preserving representation [[D]] together
with an auxiliary pieces of information, auxs which is kept

secret by the client.

The query procedure: R ← Query(q,auxs , [[D]]), is a de-
terministic algorithm which is run interactively by the client

and the server to compute the number of occurrences of

the string q∈Σm in each document of D. The client obtains
R = OD,q =

⋃z
i=1ODi ,q , where OD,q is as per Definition 4.1,

while the server outputs nothing.

The Query procedure iteratesw ≥ 1 rounds, where each

round corresponds to the execution of three algorithms:

• Trapdoor: [[q]]j ← Trapdoor(j,q,auxs , res0, . . . ,
resi−1), is a probabilistic algorithm, run at client side,

which employs auxs and the results of previous rounds
to build the privacy-preserving representation (a.k.a.

trapdoor) [[q]]j of the queried substring q for the j-th
round.

• Search: [[resj ]] ← Search([[q]]j , [[D]]), is a deter-

ministic algorithm, run at server side, which employs

[[q]]j and [[D]] to compute a privacy-preserving rep-

resentation of the result for the j-th round, i.e., [[resj ]].
• Retrieve: resj ← Retrieve([[resj ]],auxs ), is a deter-
ministic algorithm, run at client side, which takes as

inputs [[resj ]] and auxs and computes the result resj .

Relying on the substring search algorithm based on the

BWT transformation and reported in Algorithm 1 and the

Lipmaa PIR protocol based on the FLAHE Paillier scheme,

we now provide the operational description of the proposed

PPSS protocol, reported in Algorithm 2 and Algorithm 3.

The document collectionD employed for the searching op-

eration is encrypted with a symmetric-key, and outsourced

to the remote server. Along with the encrypted version of D,
the client computes the indexing structure [[D]] by employ-

ing the Setup procedure.
This procedure (see Alg. 2) takes as input the z documents

in D to compute a single string s obtained concatenating the

documents, interleaved with $ (lines 2–3). The additional

input λ is an integer number representing the computational

security level employed to instantiate the underlying cryp-

tographic primitives. Subsequently, the procedure computes

the (|Σ|+1)×(n+1) matrix representation of L=BWT(s), de-
noted as M in Algorithm 1, the corresponding 1 × (n + 1)

suffix array, SA, and the Rank dictionary with size |Σ|+1, con-
taining pairs (c, l), where l=Rank(c), 0≤l≤n+1 is the num-

ber of characters in s alphabetically smaller than c . As the
rows ofM are indexed by characters in Σ ∪ {$}, a bijective
function Order : Σ ∪ {$} 7→ {0, 1, . . . , |Σ|}, is employed to

build a dictionary including pairs (c,o), where c∈Σ∪{$} and
o=Order(c) is the unique numerical index corresponding to

the character indexing a row ofM . At lines 4–6, the integer

matrixM is converted into a (|Σ|+1)·(n+1) array of integers,

C , built as the concatenation of the rows ofM in ascending

order of the numerical index obtained via the Order func-

tion. We note that Rank(c) is summed toM[c][j] at line 6 of
Algorithm 2 to save the additions that should be executed

later as per lines 5–6 of Algorithm 1.

As the data structures C and SA are sufficient to recon-

struct s , and thus the document collection D, they are cell-

wise encrypted, obtaining arrays ⟨C⟩ and ⟨SA⟩, before being
outsourced. To this end, any secure cipher E can be em-

ployed; we choose a symmetric block cipher for efficiency

reasons. The algorithms referring to the mentioned cipher

are denoted as (E .KeyGen, E .Enc, E .Dec), where the KeyGen
procedure yields a pair of public and private keys, i.e.: pkE ,
skE (line 7), where pkE = skE if E is a symmetric-key cipher.

Since an adversary with partial knowledge of the content

of the document collection will infer the content of some of

the cells in SA or C , the cell-wise encrypted arrays ⟨SA⟩ and
⟨C⟩ are randomly shuffled at lines 8–11 by employing two

keyed Pseudo Random Permutations (PRPs) [2], denoted as

πSA, πM , respectively, which are defined as follows:

πSA : {0, 1}λ × {1, . . . ,n+1} 7→ {1, . . . ,n+1}

with πSA(k, i)=j, 1≤i, j≤n+1; while,

πC : {0, 1}λ×{1, . . . , (|Σ|+1)·(n+1)}7→{1, . . . , (|Σ|+1)·(n+1)}

with πC (k, i)=j, 1≤i, j≤(|Σ|+1)·(n+1). The same key K gen-

erated at line 7 is employed for both the PRPs. At line 12,

the secret information kept by the client auxs is computed

as the dictionary Order, the secret key of cipher E and key

K employed in the PRPs. Finally, the Setup procedure in

Algorithm 2 returns the secret data to be kept by the client,

auxs=(Order, skE,K), and the privacy-preserving represen-

tation [[D]] of the indexing structure of the document collec-

tion to be outsourced, as the pair of encrypted data structures

(⟨C⟩, ⟨SA⟩).
The Query procedure takes as input them-character string

to be searched q, the secret parameters of the client auxs=
(Order, skE,K), and the privacy-preserving representation

[[D]] = (⟨C⟩, ⟨SA⟩).
The operations performed during the execution of the

Query procedure are grouped in two phases. The first phase,

labeled as Qnum (lines 2–11), corresponds to lines 1–6 in

Algorithm 1, and allows to evaluate as β −α the total number

of occurrences of q in the remotely stored documents. In

particular, all memory look-ups performed on the matrix

representation M of the BWT of the document collection

in Algorithm 1 are realized accessing the cells of the array

⟨C⟩. As the cells of ⟨C⟩ are shuffled w.r.t. the cells over C ,
the client needs to compute the position of an entry C[α]
(C[β] resp.) in ⟨C⟩, by employing the keyed PRP as shown in

line 5 (line 9 resp.). Realizing each access via the primitives of



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

Algorithm 2: Setup Procedure of our PPSS Protocol
Function Setup(D,λ):

Input: Document Collection D = {D1, . . . ,Dz },

security parameter λ
Output: [[D]], privacy-preserving representations of

the indexing structure of D;
auxs , secret auxiliary information employed

by the client to perform search requests

1 begin
2 s ← concat(D1, $,D2, $, . . . ,Dz , $)

3 n ←
∑z
i=1 len(Di ) + 1

/* Compute the suffix array SA, the
matrix M and the Rank dictionary for
string s (see Section 3.1) */

/* Compute the dictionary
Order : Σ ∪ {$} 7→ {0, 1, . . . , |Σ|},
containing pairs (c,o) where c∈Σ∪{$},
and o=Order(c) is a unique numerical
index. */

4 foreach c ∈ Σ ∪ {$} do
5 for j ← 1 to n + 1 do
6 C[Order(c)·(n+1)+j] ← Rank(c)+M[c][j])

7 K
R
← {0, 1}λ , (pkE, skE ) ← E .KeyGen(λ)

8 for i ← 1 to n + 1 do
9 ⟨SA⟩[πSA(K, i)] ← E .Enc(pkE, SA[i])

10 for i ← 1 to (n + 1) · (|Σ| + 1) do
11 ⟨C⟩[πC (K, i)] ← E .Enc(pkE ,C[i])

12 auxs ← (Order, skE ,K)

13 [[D]] ← (⟨C⟩, ⟨SA⟩)
14 return (auxs , [[D]])

any PIR protocol allows to hide the position of the array cell

requested by the client thus, providing search pattern privacy

of the retrieved content. Indeed, without the PIR protocol the

adversary, i.e., the server, would be able to infer the similarity

between the strings searched in two separate queries due to

deterministic access to the same positions of the array ⟨C⟩. In
our proposal, the Lipmaa PIR protocol described in in Section

3.2 is adopted due to its efficiency in terms of communication

complexity. Finally, as each cell ⟨C⟩[h] stores an encrypted

content, the client needs to further decrypt the material

returned by the PIR-retrieve procedure, as shown in line 7

(line 11 resp.).

The second phase, labeled as Qocc (lines 12–16), corre-

sponds to lines 7–9 in Algorithm 1, and allows to compute

the set of positions, in the remotely stored documents, where

the leading characters of the occurrences of q are found. Sim-

ilarly to the previous phase, each memory look-up to the

suffix array data structure in Algorithm 1 is realized by ac-

cessing privately the cells of the array ⟨SA⟩.

Algorithm 3: Query Procedure of our PPSS Protocol
Function Query(q, auxs , [[D]]):

Input: q,m-character string to be search;

auxs , secret auxiliary information employed by

the client to perform search requests containing

(Order, skE ,K);
[[D]], remotely accessed privacy-preserving

representations of the indexing structure of D,
containing (⟨C⟩, ⟨SA⟩).

Output: Rq , set of positions of occurrences of q in D
Data: (pk, sk), public and private Paillier FLAHE

keypair;

b, radix employed to represent in positional

notation an integer index in the Lipmaa PIR

protocol

1 begin
2 α←0, β←n+1 // start of the 1st phase: Qnum
3 for i ←m downto 1 do
4 α ← α + Order[q[i]] · (n + 1)

5 ⟨h⟩ ← PIR−Trapdoor(pk,b, πC (K,α))

6 ctx← PIR−Search(⟨h⟩,b, ⟨C⟩)

// ciphertext of ⟨C⟩[πC (K,α)]

7 α ← E .Dec(skE, PIR−Retrieve(sk, ctx))

8 β ← β + Order[q[i]] · (n + 1)

9 ⟨h⟩ ← PIR−Trapdoor(pk,b, πC (K, β))

10 ctx← PIR−Search(⟨h⟩,b, ⟨C⟩)

// ciphertext of ⟨C⟩[πC (K, β)]

11 β ← E .Dec(skE , PIR−Retrieve(sk, ctx))

12 Rq ← ∅ // start of the 2nd phase: Qocc
13 for i ← α + 1 to β do
14 ⟨h⟩ ← PIR−Trapdoor(pk,b, πSA(K, i))

15 ctx← PIR−Search(⟨h⟩, ⟨SA⟩)

// ciphertext of ⟨SA⟩[πSA(K, i)]

16 Rq←Rq∪E .Dec(skE, PIR−Retrieve(sk, ctx))

17 return Rq

Informally, the security of our protocol is based on the

security of the PIR protocol employed and on the semantic

security of the encryption scheme used to encrypted the

array ⟨C⟩ and the suffix array ⟨SA⟩, as the server observes
only PIR queries on arrays encrypted with a semantically

secure encryption scheme. The only information leaked to

the server is the size of the array ⟨C⟩ and of the suffix array

⟨SA⟩, which are both proportional to the size of the docu-

ment collection, while the lengthm of the substringq and the
number of occurrences |Rq | are leaked by the number of iter-

ations required by the execution of the phases in Algorithm 3

labeled as Qnum and Qocc, respectively.
Concerning the computational and communication com-

plexities of the Setup and Query procedures, we note that

the former costs O(n) bit operations, while storing [[D]]
on the server requires O(n) storage space. The cost of the



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

latter procedure is split between the client and the server

obtaining, respectively,O((m+ |Rq |) ·b log
3(N ) log4b (n)) cost,

where N is the modulus employed in the FLAHE Paillier

keypair, and O((m + |Rq |) ·
n
b log

3(N )) cost. The amount of

data exchanged between the client and the server amounts

to O((m + |Rq |) · log(N )b log
2

b (n)).

Multi-user Extension. Differently from many of the cur-

rent PPSS protocols, our approach can be promptly and effi-

ciently adapted to a multi-user scenario where a data-owner

outsources the indexing data structure to a service provider,

and multiple users equipped with their own Pailler FLAHE

key-pair access the data structure running the PIR primitives

simultaneously.

In such a setting, each user is guaranteed to perform its

own substring search without leaking any information to

both other users and the service provider itself. Indeed, the

search and access pattern privacy of the queries of a user are

guaranteed even in case of collusion between other users

and the service provider.

From an operational point of view the data owner runs

the Setup procedure shown in Algorithm 2, computing the

pair of arrays [[D]]=(⟨C⟩, ⟨SA⟩) to be outsourced and shares

the secret auxiliary information auxs ← (Order, skE,K)
with the authorized users. Each authorized user in turn can

independently run a modified version of the Query proce-

dure shown in Algorithm 3 to find occurrences of a sub-

string of her/his choice. The modifications to the Query
procedure consists in replacing the use of the original Lip-

maa PIR−Search primitive with the one reported in Al-

gorithm 4, which aims to reduce the memory consump-

tion of the Lipmaa PIR−Search procedure when multiple

queries are simultaneously performed. Indeed, each run of

the PIR−Search procedure in Lipmaa’s protocol (Section 3.3)

runs t = ⌈logb (n)⌉ iterations, with the i-th iteration comput-

ing an array Ahi−1 with ⌈
n
b i ⌉ elements. In particular, the first

iteration computes an array Ah0 with ⌈
n
b ⌉ entries, in turn re-

quiring O(n) memory to be allocated. Therefore, if u queries

are performed simultaneously, the memory consumption of

Lipmaa’s protocol is O(n + u · n), providing poor scalability

in case of multiple queries. To address this scalability issue,

we propose to schedule differently the operations performed

in the PIR protocol. Specifically, the PIR−Search procedure

serializes the computation of the entire arraysAh0, . . . ,Aht−1 .

Nonetheless, it is possible to compute the element Ah1 [0] as

soon as the b elements Ah0 [0], . . . ,Ah0 [b−1] are computed,

and, similarly, compute Ah1 [1] as soon as the b elements

Ah0 [b], . . . ,Ah0 [2b−1] are computed. Considering a generic

Ahi [j], 0≤i≤t−1, 0≤j≤⌈
n

b i+1 ⌉ element, we can compute it

as soon as the b elements Ahi−1 [b·j], . . . ,Ahi−1 [b·j+b−1] are
available. This schedule of the operations is achieved by the

recursive computation in Algorithm 4.

Algorithm 4: Optimized PIR-Search algorithm

Function PIR−Search(⟨h⟩, b, A):
Input: ⟨h⟩, obfuscated value of the position h,

represented as the concatenation of the bit-wise

encryptions of each b-bit string in the sequence

hdigit
0
, . . . , hdigitt−1, with t =

⌈
logb (n)

⌉
(see Section 3.3);

b ≥ 2, radix chosen by the client to construct

⟨h⟩;
A, remote array with n entries.

Output: content of the cell A[h]
return RecursiveRet (⟨h⟩, A, ⌈t⌉, 1, n, b)

Function RecursiveRet(⟨h⟩, A, l , begin, end, b):
if end − begin = 0 then

return A[begin]

size←
⌊
end−begin

b

⌋
, acc← 1

for i ← 1 to b do
el←
RecursiveRet(⟨h⟩,A, l − 1, begin, begin + size)

begin← begin + size + 1

acc← (acc · ⟨h⟩[(l · b + i]el) mod N l+1

return acc

The computational complexity of this algorithm is clearly

equivalent to the naive iterative implementation, as the same

operations are performed. Nevertheless, it exhibits a sub-

linear memory consumption per query. Indeed, the max-

imum depth of recursion is O(log(n)), which means that

only the memory for theO(log(n)) recursive calls is required.
Each recursive call needs to store O(l log(N )) bits due to the

Paillier ciphertexts in Z∗
N l+1 , hence the overall storage cost

is:

∑ ⌈log(n)⌉
l=1 O(l log(N )) = O(log2(n) log(N )). In conclusion,

when u queries are simultaneously performed, the server

stores onlyO(n+u ·log2(n))memory, with significant savings

w.r.t. a naive approach.

5 SECURITY ANALYSIS
In the previous sections we observed how our PPSS protocol

ensures the confidentiality of the remotely stored string, of

the searched substring, and of the results returned by each

search query. Furthermore, it provide indistinguishability of

the search-pattern followed by multiple queries as well as

the access-pattern privacy of locating the occurrences of a

given substring.

In the following, adopting the framework introduced by

Curtmola in [8], we provide a formal definition of the infor-

mation leakage coming from a PPSS and we formally specify

the adversarial model as well as the security guarantees pro-

vided by our PPSS protocol.



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

Experiment transcript ← RealP,A (λ):
(D, stA ) ← AD(1

λ), ([[D]],auxs ) ← P .Setup(D, 1λ)
∀i ∈ {1, . . . ,d}: List_qi ← ∅, List_Ri ← ∅

(qi , stA ) ← Ai

(
[[D]], {List_ql}i−1l=1, {List_Rl}

i−1
l=1, stA

)
∀j ∈ {1, . . . ,w}:
[[qi ]]j ← P .Trapdoor(j,qi ,auxs , res1, . . . , resj−1)
([[resj ]], stA ) ← A.Search(stA, [[qi ]]j , [[D]])
resj ← P .Retrieve([[resj ]],auxs )

List_qi ← ([[qi ]]1, . . . , [[qi ]]w )
List_Ri ← ([[res1]], . . . , [[resw ]])

transcript ←
{
[[D]], stA, {List_qi}di=1, {List_Ri}

d
i=1

}

Experiment transcript ← IdealA,S(λ):

(D, stA ) ← AD(1
λ), ([[D]], stS) ← SD(LD, 1

λ)

∀i ∈ {1, . . . ,d}: List_qi ← ∅, List_Ri ← ∅

(qi , stA ) ← Ai

(
[[D]], {List_ql }i−1l=1, {List_Rl }

i−1
l=1, stA

)
∀j ∈ {1, . . . ,w}:
([[qi ]]j , stS) ← Sqi (j, stS,LD,Lq1 , . . . ,Lqi−1 ,Lqi )
([[resj ]], stA ) ← A.Search(stA, [[qi ]]j , [[D]])

List_qi ← ([[qi ]]1, . . . , [[qi ]]w )
List_Ri ← ([[res1]], . . . , [[resw ]])

transcript ←
{
[[D]], stA, {List_qi}di=1, {List_Ri}

d
i=1

}
Figure 2: Security game experiments

Definition 5.1 (Leakage of PPSS Protocol). Given a doc-

ument collection D, a string q, and a PPSS protocol P =

(Setup, Query) its leakage L = (LD,Lq) is defined as fol-

lows. LD denotes the information learnt by the adversary

in the Setup phase, i.e., the information inferred by the ad-

versary from the observation of the privacy-preserving rep-

resentation [[D]]. Lq denotes the information learnt by the

adversary in thew iterations (rounds) executed during the

Query phase of the protocol, i.e., information inferred from

the result of the Trapdoor procedure and the execution of

the Search procedure.

The security game stated in Definition 5.2 allows to prove

that a semi-honest adversary does not learn anything but the

leakage L. To this end, this definition requires the existence

of a simulator S, taking as inputs only LD and Lq , which

is able to generate a transcript of the PPSS protocol for the

adversary that is computationally indistinguishable from the

one generated when a legitimate client interacts with the

server during a real execution of the protocol.

Definition 5.2 (Security Game). Given a PPSS protocol P

with security parameter λ, d≥1 queries and the leakage of P
for all the queries L = (LD,Lq1, . . . ,Lqd ), an adversary A

consisting of d + 1 probabilistic polynomial time algorithms

A = (AD,A1, . . .Ad ), and a simulator S, which is also

a tuple of d + 1 probabilistic polynomial time algorithms

S = (SD,Sq1, . . .Sqd ), the two probabilistic experiments

RealP,A(λ) and IdealA,S(λ) shown in Fig. 2 are considered.

Denote as D(o) a probabilistic polynomial time algorithm

taking as input a transcript of an experiment o and returning
a boolean value indicating if the transcript belongs to the

real or ideal experiment. The protocol P, with leakage L, is

secure against every semi-honest probabilistic polynomial

time adversaryA = (AD , . . .Ad ), if there exists a simulator

S = (SD ,Sq1, . . .Sqd ) such that for every D:

Pr
(
D(o)=1|o←RealP,A(λ)

)
− Pr

(
D(o)=1|o←IdealA,S(λ)

)
≤ ϵ(λ), where ϵ(·) is a negligible function.

In the experiments shown in Fig. 2, D is chosen by the

adversarial algorithmAD and the query qi is adaptively cho-
sen by the i-th adversarial algorithm Ai , depending on the

transcripts of the protocol in the previous queries. All the

adversarial algorithms share a state, denoted as stA , which
is used to store possible information learnt by the adversary

throughout the experiment.

The RealP,A experiment represents an actual execution

of the protocol, where the client receives the document col-

lection D and the d queries and it behaves as specified in the

protocol; conversely, in the IdealA,S experiment, the client

is simulated by S, which however employs only the leakage

information L = (LD , Lq1, . . . ,Lqd ). In particular, the sim-

ulator SD constructs a privacy-preserving representation

[[D]] by exploiting only the knowledge of LD , while each

simulator Sqi constructs the trapdoor for each round of the

i-th query by exploiting only the knowledge of the leakage

LD , Lqj , j = 1, . . . , i .

Theorem 5.3. Given a document collection D with z ≥ 1

documents {D1, . . . ,Dz } and d ≥ 1 substrings q1, . . . ,qd , our
PPSS protocol is secure against a semi-honest adversary, as
per Definition 5.2, with a leakage L = (LD ,Lq1, . . . ,Lqd ),
where LD = (

∑z
i=1(len(Di ) + 1),ω), with ω denoting the

size of ciphertexts computed by the semantically secure en-
cryption scheme E employed to construct [[D]], and Lqi =

(len(qi ),bi , |OD,qi |), 1≤i≤d , whereOD,qi is defined as per Def-
inition 4.1 and bi is the radix chosen to execute the Lipmaa PIR
protocol.

Proof. See Appendix A. □

We remark that Theorem 5.3 guarantees search and access

pattern privacy, as they are not enclosed in the leakage L.

6 EXPERIMENTAL EVALUATION
We validated our PPSS protocol implementing a client-server

architecture and running it on a dual Intel Xeon CPU E5-2620

clocked at 3 GHz, endowed with 128 GiB DDR4-2133, and



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

0 100 200

0

50

100

Genome Size (MiB)

S
e
t
u
p
T
i
m
e
(
s
)

Figure 3: Execution time of the Setup procedure for
genomes of increasing size. The blue line shows the fit
between the experimental data and the linear model
given by SetupTime = 0.4369 ∗GenomeSize − 2.2

64-bit Gentoo Linux17.0 OS. Our implementation provides a

cryptographic security level of at least λ = 80 bits, relying on

the multi-precision integer arithmetic GMP library [14] and a

proper parametrization of the generalized Pailler algorithms

provided by the libhcs library [29], to implement the PIR-

related cryptographic operations. The AES-128 CounTeR

(CTR) mode primitives of OpenSSL ver. 1.0.2r [17] are used

for the cell-wise encryption/decryption of [[D]]=(⟨C⟩, ⟨SA⟩).
Our implementation, together with detailed instructions on

how to reproduce the experimental campaign described in

the following, as well as the data files employed for assessing

functionalities and performance of the provided implemen-

tation, are publicly available online [20].

We chose as our case study a genomic dataset in the

widely employed FASTA format [7] where an alphabet of

five characters is employed to represent a DNA sequence, i.e.:

Σ = {C,G,A,T ,N }. Specifically, we considered a document

containing approximately 40 · 106 nucleotides (characters)

belonging to the 21-th human chromosome selected from

the Ensembl publicly available data [12].

In the experiments, we considered documents with vari-

able sizes replicating and truncating the mentioned dataset

appropriately. We considered substring searches with a sub-

string q havingm = 6 characters, as it is the size of many

restriction enzyme sites (transcribed asm-character strings),

that are commonly employed in DNA-based paternity tests.

Indeed, the test employs the distances between the occur-

rences of one of the mentioned substrings in the DNA frag-

ments of two hosts to identify if the hosts are related [1].

In the actual implementation employed for the experimen-

tal campaign, we introduced some optimizations which allow

to reduce the number of entries in the arrays ⟨C⟩ and ⟨SA⟩.
First of all, we recall that ⟨C⟩ is the cell-wise encryption of

the array C , which is obtained as described in lines 4 – 6

of Algorithm 2 from the matrix representation, M , of the

BWT, L, of the document. Specifically, as any entryM[c][i],

with c ∈ Σ ∪ {$}, i ∈ {1, . . . ,n + 1} stores the number of

occurrences of character c in the subarray (L[1], . . . , L[i]),
the arrayC has (|Σ| + 1) · (n + 1) entries storingO(logn) bits.
To reduce the memory footprint of this array, we derive an

hybrid representation between M and the BWT L: given a

parameter R, referred to as sample period, we construct an
arrayCR with

⌈n+1
R

⌉
entries, whereCR [j] is a tuple with R+1

elements, the first one being M[:][j · R], that is the j · R-th
column ofM , and the other R ones are the characters of the

BWT L at positions {j · R, . . . , j · R + R − 1} (i.e., CR [j] =
concatArrayWithCharacters(M[:][j · R], L[j · R], L[j · R +
1], . . . , L[j · R + (R − 1)])). In this way, the array CR has⌈n+1

R

⌉
entries requiring (only)O(|Σ| · log(n)+R · log(|Σ|) bits.

The substring search procedure outlined in Algorithm 1 was

modified accordingly to make use ofCR in place ofM . Specif-

ically, each access toM[c][i], c ∈ Σ ∪ {$}, i ∈ {1, . . . ,n + 1},
is replaced by retrievingM[c][⌊ iR ⌋ ·R] from the ⌊ iR ⌋-th entry

of CR and adding it to the number of occurrences of c in

the first i mod R characters of the BWT L found in the ⌊ iR ⌋-

th entry of CR . We chose a sample period R which allows

to encrypt each entry of CR to an AES-128 CTR ciphertext

within approximately log(N ) bits, where N is the modulus

employed in the LFAHE Paillier scheme. Furthermore, to re-

duce the number of entries of the array ⟨SA⟩, we encrypted
in a single AES-128 CTR ciphertext of approximately log(N )
bits as many entries as possible from the array SA. In this

way, we reduced the original number of entries of the en-

crypted arrays ⟨C⟩ and ⟨SA⟩ by significant constant factors

(resp. 1200 and 28), obtaining a comparable speed-up in the

Search procedure.

In the first test, we focused on the Setup procedure of

Algorithm 2, which builds the privacy-preserving represen-

tation [[D]] of the dataset. The execution time for this pro-

cedure for genomes of increasing size is reported in Figure 3.

In this test we considered also the genomic data correspond-

ing to the 1-st human chromosome, which is much bigger

than the 21-th one employed in all other tests. The experi-

mental results confirm the expected linear trend and they

show practical performance for the Setup procedure: indeed,
building the privacy-preserving representation of the 1-st

human chromosome, which is as big as 238 MB, requires

only 103 seconds.

In the subsequent tests, we profiled the performance of the

Query procedure. We evaluated separately the two phases

of the Query procedure, labeled as Qnum and Qocc in Algo-

rithm 3, that compute the number of occurrences and the set

of positions of the leading character of the occurrence of the

substring, respectively. The performance figures related to

the second phase refers to the retrieval of a single occurrence,

as the costs of retrieving all of them is proportional to their

number. We remark that the communication cost reported in



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

0 20 40

0

20

40

Radix b

C
l
i
e
n
t
C
o
s
t
(
s
) Qnum

Qocc

0 20 40

0

5

10

Radix b

S
e
r
v
e
r
C
o
s
t
(
m
i
n
)

Qnum
Qocc

0 20 40

100

200

Radix b

C
o
m
m
.
C
o
s
t
(
k
i
B
)

Qnum
Qocc

Figure 4: Performance of our PPSS protocol as a function of the radix b employed in the PIR algorithms. Private
search of q = CTGCAG in a genome with 500k nucleotides

0 20 40

0

10

20

Genome size (MiB)

C
l
i
e
n
t
C
o
s
t
(
s
)

Qnum b=20 Qnum bn opti

Qocc b=20 Qocc bo opti

0 20 40

10
−1

10
0

10
1

10
2

Genome size (MiB)

S
e
r
v
e
r
C
o
s
t
(
m
i
n
)

Qnum 1 core Qnum bn cores

Qocc 1 core Qocc bo cores

0 20 40

100

200

300

Genome size (MiB)

C
o
m
m
.
C
o
s
t
(
k
i
B
)

Qnum b=20 Qnum bn opti

Qocc b=20 Qocc bo opti

Figure 5: Performance of our PPSS protocol as a function of the genomic document size to find one occurrence of
the substring q = CTGCAG. Considering each document size in increasing order, the optimal values of radixes bn
and bo employed during the experiments are {13, 17, 21, 26, 14, 17, 20, 21} and {27, 14, 17, 20, 24, 28, 17, 18}, respectively

our results refer to a single round of communication. In Fig-

ure 4 a remotely stored string with length equal to 500 · 103

characters is considered, and the client, server and communi-

cation costs are shown as a function of the radix b employed

in the Lipmaa’s PIR algorithm. As expected, increasing val-

ues of b allows to significantly decrease the computational

cost on server side; conversely, the client and communication

costs, which include a factor O(b log2b (n)) (see Section 3.3),

increase with the values of b, save for small values of b. The
results suggest that the optimal value of b must be found

considering the overall response time of a query, and should

be differentiated between the phases Qnum and Qocc of the
Query procedure as bn and bo , respectively.
In the next batch of tests, we consider a single-core im-

plementation where we employ the same value b = 20 for

genomes of increasing size, to observe how the performances

are affected only by the size of the document collection. In ad-

dition, we consider also a multi-core implementation of the

Search procedure of the Lipmaa’s PIR protocol. Specifically,

we employ a simple parallelization strategy which employs

b cores to simultaneously compute all the b recursive calls of

Algorithm 4. For these tests, we employ the optimal values

bn and bo for each document size. The results of these tests

are shown in Fig. 5. Regarding the server cost, we observe

a linear trend in both the single-core (continuous lines in

Fig. 5) and the multi-core implementations (dashed lines in

Fig. 5); nevertheless, the multi-core implementation is at least

one order of magnitude faster than the single-core, achiev-

ing much more practical performances (i.e., approximately 5

minutes to search for the substring q = CTGCAG in a 40 ·106

characters document containing the whole chromosome).

The client and communication costs show the expected

poly-logarithmic trend which allows to exchange kilobytes

of data to search for the occurrences of q = CTGCAG in the

whole chromosome. Furthermore, in Fig. 5 the dashed lines

on plots reporting the client and communication costs show

the benefits of employing specific values bn and bo tailored
for the size of the document.

Willing to compare the execution time of our protocol with

the one of the BWT-based substring-search procedure out-

lined in Algorithm 1 (that features no security guarantees),

we focused on querying a single occurrence of the substring

q = CTGCAG in the outsourced document. The experiment

showed an execution time for Algorithm 1 equal to a few mi-

croseconds. We remark that querying for a single occurrence

of q makes the computational complexity of Algorithm 1

unrelated to the size of the outsourced document, while the

PIR-based Query procedure outlined in Algorithm 3 has a



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

0 5 10 15

0

1

2

# Queries

M
e
m
o
r
y
C
o
n
s
u
m
p
t
i
o
n
(
G
B
)

32M 8M
2M 500k

Figure 6: Memory consumption of our PPSS protocol
when multiple simultaneous queries are performed.
Each line represent a genome with a different size

computational complexity depending linearly on the size of

the outsourced document.

Lastly, willing to verify the limited memory consumption

when multiple-queries are simultaneously performed, we

run each query in a separate thread, measuring the memory

consumption of the process, as exposed by the process record

in Linux’s proc virtual filesystem. Figure 6 shows that as the

number of simultaneous queries is increased, the memory

consumption increases keeping (roughly) the same rate for

the four dataset sizes considered. These results agree with

the asymptotic spatial evaluations reported at the end of

Section 4, where substantial storage savings w.r.t. replicating

the whole data structure per-query, are discussed.

7 CONCLUDING REMARKS
We presented the first substring search protocol with proven

guarantees of search and access pattern privacy that enables

the simultaneous execution of queries from multiple users

without the need of the data owner being online, and ex-

hibiting a sub-linear (poly-logarithmic) communication cost

per user. Our experimental validation with a case study on

genomic data shows practical execution times and communi-

cation costs, and highlights the possibility of achieving sig-

nificant benefits tuning the radix b for Lipmaa’s PIR element

representation. As interesting further developments, we will

investigate how to reduce the overall query response time

by employing different parameters and a different FLAHE

scheme as building block of the Lipmaa’s PIR. Indeed, in this

work we aimed at minimizing the communication cost of

the protocol, while results reported in [21] suggests that in

some scenarios the overall query response time is improved

by tuning the PIR parameters to tradeoff a low-bandwidth

for significant computational savings at server side, and/or

to employ a lattice-based FLAHE cryptoscheme as building

block of the Lipmaa’s PIR instead of generalized Pailler one.

ACKNOWLEDGEMENTS
This work was supported in part by the EU Commission

grant: “WorkingAge” (H2020 RIA) Grant agreement no. 826232.

REFERENCES
[1] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and

Gene Tsudik. 2011. Countering GATTACA: efficient and secure testing

of fully-sequenced human genomes. In Proc. of the 18th ACM Conf. on
Computer and Communications Security, CCS 2011, Chicago, Illinois,
USA, October 17-21, 2011, Y. Chen, G. Danezis, and V. Shmatikov (Eds.).

ACM, 691–702. https://doi.org/10.1145/2046707.2046785

[2] John Black and Phillip Rogaway. 2002. Ciphers with Arbitrary Finite

Domains. In Topics in Cryptology - CT-RSA 2002, The Cryptographer’s
Track at the RSA Conf., 2002, San Jose, CA, USA, February 18-22, 2002,
Proc. (Lecture Notes in Computer Science), Bart Preneel (Ed.), Vol. 2271.
Springer, 114–130. https://doi.org/10.1007/3-540-45760-7_9

[3] Christoph Bösch, Pieter H. Hartel, Willem Jonker, and Andreas Peter.

2014. A Survey of Provably Secure Searchable Encryption. ACM
Comput. Surv. 47, 2 (2014), 18:1–18:51. https://doi.org/10.1145/2636328

[4] Michael Burrows and David Wheeler. 1994. A block-sorting lossless
data compression algorithm. Technical Report. Digital Equipment

Corporation. 18 pages. http://www.hpl.hp.com/techreports/Compaq-

DEC/SRC-RR-124.pdf

[5] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015.

Leakage-Abuse Attacks Against Searchable Encryption. In Proc. of the
22nd ACM SIGSAC Conf. on Computer and Communications Security,
Denver, CO, USA, October 12-16, 2015, Indrajit Ray, Ninghui Li, and
Christopher Kruegel (Eds.). ACM, 668–679. https://doi.org/10.1145/

2810103.2813700

[6] Melissa Chase and Emily Shen. 2015. Substring-Searchable

Symmetric Encryption. PoPETs 2015, 2 (2015), 263–281.

http://www.degruyter.com/view/j/popets.2015.2015.issue-2/popets-

2015-0014/popets-2015-0014.xml

[7] P.J. Cock, C.J. Fields, N. Goto, M.L. Heuer, and P.M. Rice. 2010. The

Sanger FASTQ file format for sequences with quality scores, and the

Solexa/Illumina FASTQ variants. Nucleic Acids Research 38, 6 (2010),

1767–1771. https://doi.org/10.1093/nar/gkp1137

[8] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky.

2006. Searchable symmetric encryption: improved definitions and

efficient constructions. In Proc. of the 13th ACM Conf. on Computer and
Communications Security, CCS 2006, Alexandria, VA, USA, October 30 -
November 3, 2006, A. Juels, R. N.Wright, and S. De Capitani di Vimercati

(Eds.). ACM, 79–88. https://doi.org/10.1145/1180405.1180417

[9] Ivan Damgård and Mads Jurik. 2001. A Generalisation, a Simplification

and Some Applications of Paillier’s Probabilistic Public-Key System. In

Public Key Cryptography, 4th Intl. Workshop on Practice and Theory in
Public Key Cryptography, PKC 2001, Cheju Island, Korea, February 13-15,
2001, Proc. (Lecture Notes in Computer Science), Kwangjo Kim (Ed.),

Vol. 1992. Springer, 119–136. https://doi.org/10.1007/3-540-44586-2_9

[10] Sebastian Faust, Carmit Hazay, and Daniele Venturi. 2018. Outsourced

pattern matching. Int. J. Inf. Sec. 17, 3 (2018), 327–346. https://doi.org/

10.1007/s10207-017-0374-0

[11] Paolo Ferragina and GiovanniManzini. 2005. Indexing compressed text.

J. ACM 52, 4 (2005), 552–581. https://doi.org/10.1145/1082036.1082039

[12] Paul Flicek et. al. 2000. Ensembl Genome Browser. www.ensembl.org/.

[13] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices.

In Proc. of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, Michael Mitzen-

macher (Ed.). ACM, 169–178. https://doi.org/10.1145/1536414.1536440

[14] Torbjörn Granlund and the GMP development team. 2012. GNU MP:
The GNU Multiple Precision Arithmetic Library. http://gmplib.org/.

https://doi.org/10.1145/2046707.2046785
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1145/2636328
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1145/2810103.2813700
http://www.degruyter.com/view/j/popets.2015.2015.issue-2/popets-2015-0014/popets-2015-0014.xml
http://www.degruyter.com/view/j/popets.2015.2015.issue-2/popets-2015-0014/popets-2015-0014.xml
https://doi.org/10.1093/nar/gkp1137
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/s10207-017-0374-0
https://doi.org/10.1007/s10207-017-0374-0
https://doi.org/10.1145/1082036.1082039
www.ensembl.org/
https://doi.org/10.1145/1536414.1536440
http://gmplib.org/


ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

[15] Florian Hahn, Nicolas Loza, and Florian Kerschbaum. 2018. Practical

and Secure Substring Search. In Proc. of the 2018 Intl. Conf. on Manage-
ment of Data, SIGMOD Conf. 2018, Houston, TX, USA, June 10-15, 2018,
Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.).

ACM, 163–176. https://doi.org/10.1145/3183713.3183754

[16] Yu Ishimaki, Hiroki Imabayashi, and Hayato Yamana. 2017. Private

Substring Search on Homomorphically Encrypted Data. In 2017 IEEE
Intl. Conf. on Smart Computing, SMARTCOMP 2017, Hong Kong, China,
May 29-31, 2017. IEEE Computer Society, 1–6. https://doi.org/10.1109/

SMARTCOMP.2017.7947038

[17] Ben Kaduk et. al. 2015. OpenSSL – Cryptography and SSL/TLS Toolkit.
https://www.openssl.org.

[18] Iraklis Leontiadis andMing Li. 2018. Storage Efficient Substring Search-

able Symmetric Encryption. In Proc. of the 6th Intl. Workshop on Security
in Cloud Computing, SCC@AsiaCCS 2018, Incheon, Republic of Korea,
June 04-08, 2018, Aziz Mohaisen and Qian Wang (Eds.). ACM, 3–13.

https://doi.org/10.1145/3201595.3201598

[19] Helger Lipmaa. 2005. An Oblivious Transfer Protocol with Log-

Squared Communication. In Information Security, 8th Intl. Conf., ISC
2005, Singapore, September 20-23, 2005, Proc. (Lecture Notes in Computer
Science), J. Zhou, J. López, R. H. Deng, and F. Bao (Eds.), Vol. 3650.

Springer, 314–328. https://doi.org/10.1007/11556992_23

[20] Nicholas Mainardi. 2019. Privacy Preserving Substring Search Protocol
with Polylogarithmic Communication Cost – Software implentation.
https://dx.doi.org/10.5281/zenodo.3384814.

[21] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, andMarc-Olivier

Killijian. 2016. XPIR: Private Information Retrieval for Everyone.

PoPETs 2016, 2 (2016). https://doi.org/10.1515/popets-2016-0010

[22] Tarik Moataz and Erik-Oliver Blass. 2015. Oblivious Substring Search

with Updates. IACR Cryptology ePrint Archive 2015 (2015), 722. http:

//eprint.iacr.org/2015/722

[23] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite

Degree Residuosity Classes. In Advances in Cryptology - EUROCRYPT
’99, Intl. Conf. on the Theory and Application of Cryptographic Tech-
niques, Prague, Czech Republic, May 2-6, 1999, Proceeding (Lecture Notes
in Computer Science), Jacques Stern (Ed.), Vol. 1592. Springer, 223–238.

https://doi.org/10.1007/3-540-48910-X_16

[24] Cédric Van Rompay, Refik Molva, and Melek Önen. 2017. A Leakage-

Abuse Attack Against Multi-User Searchable Encryption. PoPETs 2017,
3 (2017), 168. https://doi.org/10.1515/popets-2017-0034

[25] Kana Shimizu, Koji Nuida, and Gunnar Rätsch. 2016. Efficient privacy-

preserving string search and an application in genomics. Bioinformatics
32, 11 (2016). https://doi.org/10.1093/bioinformatics/btw050

[26] Dawn Xiaodong Song, David A. Wagner, and Adrian Perrig. 2000.

Practical Techniques for Searches on Encrypted Data. In 2000 IEEE
Symposium on Security and Privacy, Berkeley, California, USA, May
14-17, 2000. IEEE Computer Society, 44–55. https://doi.org/10.1109/

SECPRI.2000.848445

[27] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher,

Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an

extremely simple oblivious RAM protocol. In 2013 ACM SIGSAC Conf.
on Computer and Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti

Yung (Eds.). ACM, 299–310. https://doi.org/10.1145/2508859.2516660

[28] Mikhail Strizhov, Zachary Osman, and Indrajit Ray. 2016. Substring

Position Search over Encrypted Cloud Data Supporting Efficient Multi-

User Setup. Future Internet 8, 3 (2016). https://doi.org/10.3390/

fi8030028

[29] Marc Tiehuis. 2015. libhcs: A partially Homomorphic C library. https:
//github.com/tiehuis/libhcs/tree/master/include/libhcs.

[30] BingWang,Wei Song,Wenjing Lou, and Y. Thomas Hou. 2017. Privacy-

preserving pattern matching over encrypted genetic data in cloud

computing. In 2017 IEEE Conf. on Computer Communications, INFOCOM
2017, Atlanta, GA, USA, May 1-4, 2017. IEEE, 1–9. https://doi.org/10.

1109/INFOCOM.2017.8057178

A SECURITY PROOF
Theorem 5.3 is proven by showing the existence of a sim-

ulator S which interacts with any semi-honest adversary

A, according to the IdealA,S experiment of Definition 5.2,

to produce transcript for this experiment which is computa-

tionally indistinguishable from the transcript of the RealP,A
experiment, where A interacts with a client through our

PPSS protocol. As the simulator S knows only the leakage

L as defined in Theorem 5.3, the transcript of the IdealA,S

experiment necessarily depends only on the leakage; thus, if

this transcript is computationally indistinguishable from the

one of the RealP,A experiment, then it necessarily means

that no other information than L can be inferred from the

latter transcript, as otherwise this additional information

could be exploited by the adversary to distinguish between

the two experiments. Since the transcript of the RealP,A
experiment corresponds to the information observed and

derived by the adversary in our PPSS protocol, then no other

information than L can be inferred from the adversary in

our PPSS protocol, in turn proving that the protocol leaks

no more information than L to the adversary. For the sake

of clarity, in the following we denote all the variables in-

volved in the IdealA,S experiment with a superscript Id
(e.g., [[D]]Id is the privacy-preserving representation [[D]]
computed by the simulator SD ).

Simulator Construction. We now show how to con-

struct the simulatorS. Specifically, for a document collection

D of z documents D1, . . . ,Dz and a string q, S is realized by

constructing two simulatorsSD andSq . The former employs

the leakage LD to build a privacy-preserving representation

[[D]]Id which is computationally indistinguishable from the

privacy-preserving representation [[D]] computed by the

client in our PPSS protocol. The latter simulator employs

both the leakage LD and Lq to build a trapdoor [[q]]Idj ,

j = 1, . . . ,w for each of thew rounds of the Query procedure
for the string q; all these trapdoors must be computation-

ally indistinguishable from the trapdoors constructed by the

client in thew rounds of our PPSS protocol.

• SD . Given the leakage LD = (
∑z

i=1(len(Di ) + 1),ω),
where the first term

∑z
i=1(len(Di ) + 1) is denoted in

the following as n, the simulator constructs two arrays

SAId
and C Id

with, respectively, n + 1 and (n + 1) ·

(|Σ| + 1) elements (we assume that the alphabet Σ for

the documents in D is publicly known); each entry

of these arrays contains a randomly generated string

of ω bits. Lastly, the simulator outputs the privacy-

preserving representation [[D]]Id = (C Id , SAId )

https://doi.org/10.1145/3183713.3183754
https://doi.org/10.1109/SMARTCOMP.2017.7947038
https://doi.org/10.1109/SMARTCOMP.2017.7947038
https://www.openssl.org
https://doi.org/10.1145/3201595.3201598
https://doi.org/10.1007/11556992_23
https://dx.doi.org/10.5281/zenodo.3384814
https://doi.org/10.1515/popets-2016-0010
http://eprint.iacr.org/2015/722
http://eprint.iacr.org/2015/722
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1515/popets-2017-0034
https://doi.org/10.1093/bioinformatics/btw050
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.3390/fi8030028
https://doi.org/10.3390/fi8030028
https://github.com/tiehuis/libhcs/tree/master/include/libhcs
https://github.com/tiehuis/libhcs/tree/master/include/libhcs
https://doi.org/10.1109/INFOCOM.2017.8057178
https://doi.org/10.1109/INFOCOM.2017.8057178


ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

• Sq . Given the leakages LD , Lq = (len(q),b, |OD,q |)

and the publicmodulusN for the FLAHEPaillier scheme

employed by the client in the RealP,A experiment,

the simulator simulator computes the values tC =
⌈logb (n + 1)⌉ and tSA = ⌈logb ((n + 1) · (|Σ| + 1))⌉.

Then, the simulator constructsm = len(q) trapdoors
[[q]]Id

1
, . . . , [[q]]Idm as follows. Each trapdoor is an ar-

ray with b · tC elements, where the first b entries are

integers randomly sampled in Z∗N 2
, then the subse-

quent b entries are integers randomly sampled in Z∗N 3
:

in general, the j-th entry contains an integer randomly

sampled in Z∗

N ⌈
j
b ⌉+1

. Subsequently, the simulator gen-

erates oq = |OD,q | trapdoors [[q]]
Id
m+1, . . . , [[q]]

Id
m+oq ,

where each trapdoor is an array with b · tSA elements

constructed in the samemanner as the previousm trap-

doors (i.e., the j-th entry contains an integer randomly

sampled in Z∗

N ⌈
j
b ⌉+1

).

We now prove that, for any probabilistic polynomial time

adversary A, the output of the RealP,A experiment is com-

putationally indistinguishable from the output of the IdealA,S

experiment when the simulatorS we have just constructed is

employed. Specifically, we analyze each step of the two exper-

iments and we show that the adversary cannot distinguish

the simulator from a legitimate client of our PPSS protocol.

In both the experiments, the adversary initially chooses a

document collectionD of z documents over a publicly known

alphabet Σ. In the RealP,A experiment,D is sent to the client,

which constructs a privacy-preserving representation [[D]]
by running the Setup procedure of our PPSS protocol; specif-
ically, [[D]] is composed by two cell-wise encrypted arrays

⟨C⟩ and ⟨SA⟩ with, respectively, (n + 1) · (|Σ| + 1) and n + 1
elements. Conversely, in the IdealA,S experiment, the simu-

lator SD obtains the leakage LD and constructs the privacy-

preserving representation [[D]]Id as two arrays C Id , SAId

whose size is the same as ⟨C⟩, ⟨SA⟩, respectively. The seman-

tic security of the scheme E employed to encrypt ⟨C⟩ and
⟨SA⟩ in our PPSS protocol guarantees that a ciphertext of ω
bits computed by E .Enc is computationally indistinguishable

from a random bit string of size ω, which implies that the

two privacy-preserving representations [[D]] and [[D]]Id are
computationally indistinguishable too.

After receiving the privacy-preserving representations

[[D]] and [[D]]Id , the adversary chooses a string q1. In the

RealP,A experiment, the string q1 is sent to the client, which
employs the Query procedure of our PPSS protocol to find

all the positions of the occurrences of q1 in D. In each of

the w rounds of the Query procedure, the client employs

the Trapdoor procedure to generate a trapdoor [[q1]]j , j =
1, . . . ,w , which corresponds to a trapdoor in the Lipmaa’s

PIR protocol. In the IdealA,S experiment, the simulator Sq1

receives the leakage Lq1 , which is employed to build a trap-

door [[q1]]
Id
j , j = 1, . . . ,w for each of the w rounds. The

semantic security of the FLAHE Paillier scheme guarantees

that a ciphertext computed by the encryption procedure with

length l (i.e., FLAHE.Elpk ) is computationally indistinguishable

from a random integer in Z∗
N l+1 , which means that the set

of trapdoors [[q1]]j are computationally indistinguishable

from the set of trapdoors [[q1]]
Id
j .

Subsequently, in the RealP,A (resp. IdealA,S) experiment,

the trapdoor [[q1]]j (resp. [[q1]]
Id
j ) generated by the client

(resp. Sq1 ) in each of thew rounds is received by the adver-

sary which employs the Search procedure of Lipmaa’s PIR

protocol to compute a ciphertext [[resj ]] (resp. [[resj ]]
Id
).

The semantic security of the FLAHE Paillier scheme guar-

antees that all the intermediate values computed by each

homomorphic operation of the Search procedure in the

RealP,A experiment are computationally indistinguishable

from the corresponding intermediate values in the IdealA,S

experiment. Indeed, in the former experiment, given two

ciphertext c1 and c2 in Z
∗

N l for the FLAHE Paillier scheme,

each homomorphic addition computes cadd = c1 · c2 mod N l
,

with cadd being a ciphertext in Z∗
N l ; in the latter experiment,

the homomorphic addition multiplies two random integers

in Z∗
N l , obtaining a new random integer in Z∗

N l which is

computationally indistinguishable from cadd . Similarly, in

the RealP,A experiment, given a ciphertext c1 ∈ Z
∗

N l and

a ciphertext c2 ∈ Z
∗

N l+1 , each hybrid homomorphic multipli-
cation computes chmul = cc1

2
mod N l+1

, with chmul being a

ciphertext in Z∗
N l+1 ; In the IdealA,S experiment, each hybrid

homomorphic multiplication computes the exponentiation

between a random integer in Z∗
N l+1 and a random integer in

Z∗
N l , obtaining a new random integer in Z∗

N l+1 which is com-

putationally indistinguishable from chmul . Therefore, as the

Search procedure of Lipmaa’s PIR performs only homomor-

phic operations, we conclude that all values (including the

outcomes [[resj ]] and [[resj ]]
Id
) observed by the adversary

throughout this computation in the RealP,A and IdealA,S

experiments are computationally indistinguishable. In con-

clusion, the adversary cannot distinguish an interaction with

a legitimate client in our PPSS protocol from an interaction

with the simulator Sq1 for the first query q1.
We note that the same reasoning allows to prove that all

the trapdoors and the intermediate values observed by the

adversary in the subsequent d − 1 queries in the two ex-

periments are computationally indistinguishable. Indeed, in

each query, the simulator simply needs to construct trap-

doors which looks like generic FLAHE Paillier ciphertexts

as computed by the legitimate client in our PPSS protocol

independently from their corresponding plaintext value, as

the semantic security of the scheme hides any information

about the encrypted information stored in these trapdoors.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Substring Search with BWT
	3.2 Cryptographic Building Blocks
	3.3 Lipmaa's PIR Protocol

	4 Proposed PPSS Protocol
	5 Security Analysis
	6 Experimental Evaluation
	7 Concluding remarks
	References
	A Security Proof

