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Abstract: One century after the first recording of human electroencephalographic (EEG) signals, EEG
has become one of the most used neuroimaging techniques. The medical devices industry is now
able to produce small and reliable EEG systems, enabling a wide variety of applications also with
no-clinical aims, providing a powerful tool to neuroscientific research. However, these systems still
suffer from a critical limitation, consisting in the use of wet electrodes, that are uncomfortable and
require expertise to install and time from the user. In this context, dozens of different concepts of
EEG dry electrodes have been recently developed, and there is the common opinion that they are
reaching traditional wet electrodes quality standards. However, although many papers have tried
to validate them in terms of signal quality and usability, a comprehensive comparison of different
dry electrode types from multiple points of view is still missing. The present work proposes a
comparison of three different dry electrode types, selected among the main solutions at present,
against wet electrodes, taking into account several aspects, both in terms of signal quality and
usability. In particular, the three types consisted in gold-coated single pin, multiple pins and solid-gel
electrodes. The results confirmed the great standards achieved by dry electrode industry, since it
was possible to obtain results comparable to wet electrodes in terms of signals spectra and mental
states classification, but at the same time drastically reducing the time of montage and enhancing the
comfort. In particular, multiple-pins and solid-gel electrodes overcome gold-coated single-pin-based
ones in terms of comfort.

Keywords: brain activity; electroencephalography; wet electrodes; dry electrodes; frequency domain;
power spectral density; machine-learning; wearable devices; mental workload

1. Introduction

Almost a century ago (1924), the German physiologist and psychiatrist Hans Berger (1873–1941)
was able to record human brain electrical activity through two electrodes placed on the scalp,
applying for the first time techniques investigated some years before by his colleagues on animals [1].
This technique, that Berger named “electroencephalography” (EEG), is considered as “one of the most
surprising, remarkable, and momentous developments in the history of clinical neurology” [2].
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Nowadays, EEG is actually one of the most common and used techniques of neuroimaging,
since compared to other techniques such as functional Magnetic Resonance Imaging (fMRI),
Magnetoencelography (MEG) and functional Near-InfraRed spectroscopy (fNIRS), it is able to ensure
at the same time great temporal and potentially good spatial resolution (with a high number of
electrodes), it is relatively cheap and portable [3]. For such a reason, during the last decades EEG has
gone beyond hospital doors, becoming not only a reliable monitoring system for healthcare [4], but also
a powerful and versatile tool for investigating human brain physiology, cognition and behavior [5,6].
Because of the increasing interest and demand of such technology, and thanks to the fast progresses of
micro- and nanoelectronic industry, biomedical devices manufacturers have been able to drastically
reduce the dimensions of EEG devices. Therefore, if in the 60s an EEG device required a room and
meters of cables, modern EEG devices are no larger than a smartphone and equipped with storage
support, long-life batteries and wireless communication. These great improvements are at the basis
of the recent successes of cognitive and behavioral neuroscience research, since it is now possible to
investigate human brain physiological dynamics while working or performing everydayness activities,
such as driving the car [7–9] or piloting an aircraft [10–12], working in control rooms [13–16], watching
the TV [17,18], doing sport [19], eating [20], listening music [21,22] or smelling fragrances [23,24]. EEG
devices are now wearable and they are considered the key tool to bring research about Brain-Computer
Interfaces (BCI, i.e., those system aimed to adapt the objects behavior on the basis of current human
mental states) from the laboratory to the applicative fields [25,26]. In this context, several prototypes
of EEG-based BCIs have been already validated in real settings [27,28], however a still present issue
limiting the development and employment of such technologies is their ease of use and acceptability
to the user.

In fact, despite the great improvements in terms of EEG device sizes and features, the quality
and reliability of this technology still relies on recording brain signals through metallic sensors to
be applied over the rubbed scalp and by adapting impedances through gels or other conductive
substances. More in detail, EEG electrodes are produced with the shape of a cup, disc or needle,
and are usually made of silver (Ag) and silver chloride (AgCl) [29]. Because Ag is a slightly soluble
salt, AgCl quickly saturates and comes to equilibrium. Therefore, Ag is a good metal for metallic
skin-surface electrodes [30]. Before putting the electrodes over the scalp, it is necessary to rub scalp
skin with pastes or alcohol solutions, in order to remove all the substances and any kind of impurity
generally present over the scalp epidermis. Then, traditional Ag/AgCl electrodes require electrolyte gel
that facilitates the transduction of the ionic currents between the skin and the electrode. Furthermore,
the electrode-skin impedance must be controlled and adapted to achieve acceptable low values,
typically 5 ÷ 20 KΩ [31,32]. These are mainly manual actions that require technicians with expertise in
EEG recordings. Another remarkable inconvenience is the annoyance caused to the subject under test.
For instance, the abrasive paste and the electrolyte gel, despite being minimally invasive and barely
harmful, are sticky products that make the hair and scalp wet and dirty. Also, the time needed to adapt
the impedance can last long. The use of a massive electrolyte to speed up the impedance adaptation
could cause electrical bridges between electrodes, thus being counterproductive. Last but not least,
once acceptable impedances values have been achieved, the following issue will be gel drying, thus
causing degradation of its conductive properties. For example, Lin and colleagues [33] measured an
impedance deterioration of wet electrodes from 5 to 15 kΩ within 5 h after gel application. Many of
these problems can be minimized by using dry electrode systems [34], therefore the research about
EEG dry electrodes, started during the nineties [35,36], is recently living a very fertile period. Let us
think that some years ago practical dry electrodes have been identified as one of the two disruptive
technologies in BCI research [37,38].

Recent studies produced a wide variety of EEG electrode concepts based on dry technology,
including silicone conductive rubber [39], comb-like and multi-pin electrodes [40,41], gold-plated
electrodes [37,42], bristle-type electrodes [43], and foam-based sensors [33]. In general, all these
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solutions could be categorized into spiky, capacitive/non-contact or other heterogeneous types of
contact [44]:

• Spiky Contact: in this solution, the electrode surface consists of linear or circular array of spikes
that come into direct contact with the scalp;

• Capacitive/Non-contact: since the absence of impedance adaptation substances could make the
skin-electrode contact instable over time, some researchers coped with this difficulty by avoiding
physical contact with the scalp through non-conductive materials (i.e., a small dielectric between
the skin and the electrode itself): despite the extraordinary increase of electrode impedance, in this
way it will be quantifiable and stable over time [45];

• Others: other heterogeneous approaches in terms of materials, such as foams or solid gels [46].

In addition, because of their intrinsic higher impedance, if compared with traditional wet
electrodes, a complementary solution could be to on-site amplify (i.e., just over the electrode, and
upstream the cable toward the device amplifier) the signal with ultra-high input impedance amplifiers
(the so-called “active electrodes”).

Several attempts are already present in literature about the comparison and validation of these
innovative dry electrodes [42,47]: there is the common opinion that wet electrodes have to be still
considered the gold standard [42,44], however the gap between wet and dry electrodes is more
and more reduced. Of course, it is important to take into account that low-cost devices (i.e., a few
hundred euros, such as Emotiv EPOC or Neurosky MindWave) are still far from being reliable for
applications other than gaming and playful activities in general [48,49]. Nevertheless, in their recent
review [44] Lopez-Gordo and colleagues pointed out that, among this wide variety of works, there
is still the lack of a comprehensive comparison between different electrodes concepts. In fact, the
works are generally focused on contrasting a specific dry solution versus traditional wet electrodes,
or investigated a specific application (e.g., only ERPs): sometimes they are based just on qualitative
analysis while only few studies report some statistics, such as correlation or specific signals spectral
features. They concluded that “different dry electrode approaches are conceptually distinct and, in the
literature, reports of performance have been carried out with non-homogenous methodologies, so their
results cannot easily be discussed or compared”, thus encouraging additional work to evaluate the
level of maturity achieved by dry technology for the recording of EEG signals in clinical and other
applications [44].

In this context, the present work aims to provide a comprehensive comparison between three
different types of dry EEG electrodes, among them and with respect to wet electrodes. The wet
electrodes consisted in traditional Ag/AgCl ring-shaped electrodes, while the three dry types consisted in:

• Active gold-coated single pin electrode;
• Hybrid (capacitive/conductive) multiple-spikes based electrode;
• Passive solid-gel based electrode.

The three different solutions of EEG dry electrodes have been selected in order to provide a
comprehensive state-of-art contribute. In fact, all the electrodes employed within this experiment:
(a) have been recently produced by leading companies of this domain; (b) are both passive and
active; and (c) provide three different types in terms of electrode material and shape. A comparison
has been made taking into account different factors, following the suggestions of Lopez-Gordo and
colleagues [44]: subjective spectral features (i.e., the Individual Alpha Frequency during a rest closed
eyes condition [50]), signal power spectra correlations during closed and open eyes conditions, mental
states classification performance in terms of mental workload, comfort perceived by the user and
easiness of use for the operator.
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2. Materials and Methods

2.1. Experimental Protocol

Twelve healthy subjects (29.7 ± 3.9 years old), all males and recruited on a voluntary basis,
participated to the experiment. Their hair length ranged from 0 (i.e., bald) to 8 cm. Informed consent
for both study participation and publication of pictures was obtained from all the subjects after
the explanation of the study. The experiment was conducted following the principles outlined in
the Declaration of Helsinki of 1975, as revised in 2000. The study protocol received the favourable
opinion and approval by the Ethical Committee of the Sapienza University of Rome. Only aggregate
information has been released while no individual information was or will be diffused in any form.

The experimental protocol consisted in repeating four times a sequence of tasks, one time per each
electrode type (i.e., traditional WET Ag/AgCl, ACTIVE DRY SINGLE-GOLD-PIN-based, HYBRID
DRY MULTIPE-SPIKES-based and PASSIVE SOLID-GEL-based electrodes, see following paragraph
for further details). The tasks sequence consisted in two rest conditions, 1 min with Closed Eyes (CE)
and 1 min with Open Eyes (OE), followed by two 3-min-long mathematical tasks. In particular, the
two rest conditions (i.e., CE and OE) have been chosen in order to not elicit any specific brain activity
in the subjects and perform comparisons among the different electrode types in terms of signal spectral
features [44]. During the CE condition the subject was asked to stay relaxed, whereas during the OE
condition to fix a point on the screen, specifically a white cross on a black background. Instead, the
two mathematical tasks have been chosen in order to elicit two different levels of mental workload
and to compare the signal recorded by means of the different electrode types in terms of classification
performance. In particular, the mathematical task consisted in solving repeated additions proposed
to the subjects through a desktop computer: each subject was asked to solve the additions trying
to achieve his best performance (i.e., to provide the correct answer within the least time possible).
The two levels of task difficulty (to elicit two different levels of mental workload) were designed
accordingly to the principles adopted by Zarjam and colleagues [51]. More in detail, the EASY task
consisted in a 1- and 2-digits numbers without any carry sum (e.g., 5 + 54, Very low level in [51]), while
the HARD task consisted in a 2- and 3-digits numbers with 1 carry sum (e.g., 31 + 477, High level
in [51]). This task was chosen because there is a rich literature on the concepts and procedure of mental
arithmetic operations [52], while in [53] it is shown that the manipulation of the number of carry
operations and the value of the carry is an important variable in varying the difficulty of arithmetic
sums. Each subject took confidence with the mathematical task before the beginning of the experiment,
in order to avoid any eventual training effect [54,55], while among the four repetitions each subject
started two times with the Easy and two times with the Hard task in a randomized way, in order to
avoid any habituation effect.

In addition, the order of the four repetitions (one per each electrode type) of the afore-described
tasks sequence was randomized among subjects in twelve different combinations in a balanced way,
i.e., each electrode type has been tested three times as the first, three as the second, three as the third,
and three as the fourth and last one. It is important to consider that after the test of the wet sensors,
the subject’s hairs were carefully washed in order to remove any gel residual before testing the next
scheduled system.

At the end of each repetition the subject was asked to evaluate on a 0-to-10 Visual Analogue Scale
(VAS) the comfort (where 0 stood for discomfort/complaint, while 10 for maximum comfort) of that
specific EEG device, while at the end of the whole experimental protocol he was asked to rank the
devices in terms of comfort itself. Furthermore, the time of montage of each EEG device for each
subject was gathered. Figure 1 represents a schematic summary of the experimental design, including
a picture of the four electrodes employed during this work.
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Figure 1. Schematic summary of the experimental protocol, with a picture of each electrode employed
during the experiments.

2.2. The four EEG Electrode Types

The three different solutions of EEG dry electrodes have been selected in order to provide a
comprehensive state-of-art contribute (please refer to the Introduction). In fact, all the electrodes
employed within this experiment: (i) have been recently produced by leading companies of this
domain; (ii) are not employed by low-cost market sector (because of the intrinsic poor signal quality of
low-cost devices [49]); (iii) are both passive and active systems; and (iv) provide three different types in
terms of electrode material and shape. This manuscript does not aim at providing technical focuses on
EEG electrodes composition, however a brief description of each one of them (represented in Figure 1)
is provided in the following paragraphs in order to differentiate them in terms of key features.

2.2.1. Traditional Wet Ag/AgCl Electrodes (Wet)

The wet electrodes employed during the experiments were traditional ring-shaped Ag/AgCl
electrodes (electrode ‘a’ in Figure 1), produced by EasyCap GmbH (Herrsching, Germany [56]),
connected through silver wires to the amplifier. In particular, in terms of EEG amplifier, the BeMicro
device (EBNeuro, Firenze, Italy [57]) was employed. The signals have been acquired without any
hardware filter at a sampling frequency of 256 Hz. For the impedances adaptation, it has been used
the electroconductive gel “ELGEL-P” produced by SEI EMG srl (Cittadella, Italy [58]). They will be
hereinafter labelled “Wet”.

2.2.2. Active Dry Single Gold Pin-Based Electrodes (BP Gold)

In this case, the electrodes consisted in a gold-coated single pin with the shape of a mushroom
(electrode ‘b’ in Figure 1). They are produced in 3 different lengths (10, 12 and 14 mm) to choose
depending on the scalp site and subject hairs. The signal is amplified just after the electrode (gain factor
= 1, Input impedance > 200 MΩ). These electrodes, named actiCAP Xpress QuickBits, are produced
by BrainProducts GmbH (Gilching, Germany [59]), and the signals have been acquired at a sampling
frequency of 250 Hz through the LiveAmp device [60] produced by BrainProducts itself. They will be
hereinafter labelled “BP Gold”.

2.2.3. Hybrid Dry Multiple Spikes-Based Electrodes (Quasar)

In this case, the electrodes consisted in hybrid biosensors using a combination of high impedance
resistive and capacitive contact to the scalp [61]. Electrical contact is made through two rings of spikes,
with a total diameter of about 3 cm (electrode ‘c’ in Figure 1). The amplifier electronics are shielded and
mounted immediately behind the electrode (Input impedance > 10 GΩ) in order to limit interference
caused by external signals. They are produced by Quasar Inc. (San Diego, CA, USA [62]). The signals
have been acquired at a sampling frequency of 300 Hz through the related DSI-7 device [63] produced
by Wearable Sensing LLC (San Diego, CA, USA [64]). They will be hereinafter labelled “Quasar”.
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2.2.4. Passive Dry Solid-Gel Based Electrodes (BP Solid)

In this case, the electrodes consisted in a cone made of a hygroscopic solid gel (electrode ‘d’ in
Figure 1). They have to be kept immersed in a saline solution for a few minutes before the experiments,
in order to be hydrated, and then to keep their characteristics stable for almost 8 h. They are a prototype
(thus still not available on the market) distributed by BrainProducts GmbH [59]. The signals have
been acquired at a sampling frequency of 250 Hz through the LiveAmp device [60] produced by
BrainProducts itself. They will be hereinafter labelled “BP Solid”.

2.3. Data Acquisition and Processing

The EEG montage, in terms of electrodes position and referencing, was chosen in order to employ
a common design among the four devices. For such a reason, EEG data were acquired from six
channels, placed accordingly to the 10–20 International Standard: F3, F4, C3, C4, P3 and P4. Depending
on the device, all the channels were referred physically or digitally to Pz, while the ground electrode
was placed over the FCz position.

At this point, the results could depend on two main factors: the different electrode type, and the
different recording moment (the electrode types were tested consecutively and not simultaneously).
Ideally, the maximum result for all the performed analysis would be achieved if during the four
repetitions the electrodes were not changed. Nevertheless, there is a certain bias while comparing on
the same subject the same conditions recorded in different times. For such a reason, three additional
EEG channels were placed and kept fixed during the whole experiment (thus during each electrode
type testing) over Fpz, AFz and POz. In this case, traditional wet electrodes were used, and they will
be hereinafter labelled “Control” electrodes (please see Figure 2B for the graphical representation of
all the electrodes position over the scalp). The aim of their employment was to separate these two
factors (electrode-related effect and time-related effect), since the Control (CNTR) electrodes were not
changed while the different electrode types were tested.
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electrodes position over the scalp.

All the data were recorded in raw format and were offline processed by using Matlab software
(MathWorks Inc., Natick, MA, USA). More in detail, the acquired signals were band-pass filtered by a
5th order Butterworth filter (low-pass filter cut-off frequency: 40 Hz, high-pass filter cut-off frequency:
1 Hz). Additionally, a notch filter was applied in order to remove any eventual interference of the mains
frequency (50 Hz). The dataset was then segmented in 2-s-long epochs, shifted of 0.5 s, with the aim to
have both a high number of observations in comparison with the number of variables, and to respect
the condition of stationarity of the EEG signal [65]. In fact, this is a necessary assumption in order to
proceed with the spectral analysis of the signal. For other sources of artefacts, specific procedures of the
EEGLAB toolbox were applied [66]. In particular, three methods were used: a threshold-based, a trend
estimation-based and a sample-to-sample difference-based criterion [67]. In the threshold criterion an epoch
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was marked as “artefact” if the signal amplitude was higher than ±80 µV. In the trend estimation
the epoch has been interpolated in order to check the slope of the trend within the considered epoch.
If such slope was higher than ±10 µV per second, the considered epoch was marked as “artefact”.
Finally, the sample-to-sample difference was calculated: if such a difference, in terms of absolute
amplitude, was higher than 25 µV, i.e., an abrupt variation (no-physiological) happened, the epoch
was marked as “artefact”. At the end, the EEG epochs marked as “artefact” were removed from the
EEG dataset with the aim to obtain an artifact-free dataset from which estimating the parameters for
the various analyses. The Power Spectral Density (PSD) was then estimated by using the Fast Fourier
Transform (FFT) on the artifact-free dataset with 2 s-long Hanning windows, therefore a frequency
resolution of 0.5 (Hz) was achieved.

2.4. Performed Analysis

2.4.1. Evaluation of the “Time Effect” on the Recordings

As described before, the four EEG devices were not used simultaneously but in a consecutive
way. In literature, it is argued that such approach could induce a certain bias, since it is not implicit the
comparability of two equal conditions recorded in two different times, although being rest conditions
of the same subject [44]. However, also the setup based on simultaneous recording from contiguous
electrodes is debated. In fact, on one hand very close electrodes could lead to electrical bridges caused
by the spreading of gel on the skin surface. It has been demonstrated that an average spread of 1 cm in
each direction under the scalp is typical during EEG recordings, thus a separation between electrodes
of more than at least 2 cm is suggested [43]. But, on the other hand, the higher such separation is, the
higher the probability of recording different electrical activity will be.

Therefore, in this study a validation of the experimental hypothesis by evaluating the “time effect”
has been performed before going through the planned analysis. This kind of evaluation was performed
by employing data recorded through the Control (CNTR) electrodes.

Taking into account that traditional wet electrodes were employed and that they were kept fixed
during the whole experiment, the brain activity recorded on each electrode during the four repetitions
was compared in terms of correlation. In particular, the Pearson’s correlation coefficient has been
estimated for each subject for each electrode, and during both the rest conditions (OE and CE), between
the PSD values of the first repetition and those of the three following ones, independently from the
electrode type tested during that specific repetition. The PSD values ranged from 2 to 35 Hz (with a
frequency resolution of 0.5 Hz, the vectors are 67 points long). The distance between each repetition
was equal to 25 min. All the comparisons have been analyzed through multiple repeated measures
ANOVAs, and in case of significance, by performing Duncan’s post-hoc tests.

2.4.2. IAF Estimation

The four electrode types were firstly compared in terms of Individual Alpha Frequency (IAF)
estimation. In fact, Klimesch [50] demonstrated that subjective alpha frequency range varies to a
large extent as a function of age, neurological diseases, memory performance, brain volume and task
demands, therefore the use of fixed frequency bands does not seem justified. For such a reason, recent
works investigating brain activity use to define subjective EEG bands as a function of the IAF [55,68–72].
In particular, accordingly to the method suggested by Klimesch and colleagues [73], the IAF has been
estimated for each subject for each EEG device (i.e., the four electrode types) as the peak between 7.5
and 12.5 Hz of the PSD averaged over the parietal channels during the Closed Eyes condition.

A repeated measures ANOVA has been performed on the obtained IAF values in order to
investigate eventual differences with respect to the traditional wet electrodes. Post-hoc analysis has
been then performed by the Duncan test. Also, the Mean Squared Error (MSE) has been calculated
between the IAF values estimated while using the three dry electrodes types and the traditional
wet ones.
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2.4.3. Power Spectra Comparison

The power spectral densities (PSD) of the EEG signals recorded through the three dry electrode
types were compared by means of the correlation, for each channel and subject, with the PSD of the
signals recorded through the traditional wet electrodes. For this kind of analysis only data related to
the Open (OE) and Closed Eyes (CE) conditions have been used, since EEG signal can be considered
stationary for prolonged time (i.e., more than few seconds) only during resting states, while the
mathematical tasks were designed in order to elicit particular cognitive processes [74].

More in detail, the Pearson’s correlation coefficient was calculated between the signal power
spectra of a specific dry electrode type and of the traditional wet one in a coherently way, i.e., for
each channel for each condition and for each subject. Let us make a practical example: the power
spectrum of the EEG signal recorded through the BP Solid electrode over the F3 position, during
the OE condition of Subject X, has been correlated with the power spectrum of the signal recorded
through the traditional wet electrode over the F3 position during the OE condition of the same Subject
X. In addition, for this kind of analysis the behavior of “Control” electrodes has been also investigated
(please refer to Par. 2.3). In particular, they remained in their positions during the test of all the devices.
Taking into account that the same electrodes used as “traditional wet electrodes” were employed,
the PSD values of their signals recorded during the three dry electrodes types have been averaged
and correlated with the PSD values obtained during the use of wet electrodes, in order to estimate
the maximum correlation achievable if the electrodes type was not changed during tasks repetition.
However, they have been used only for qualitative analysis, since their position was different from the
position of tested electrodes.

The global correlation has been computed averaging, per each device (i.e., the four electrode
types), the PSD values ranging from 2 to 35 Hz (with a frequency resolution of 0.5 Hz, the vectors
are 67 points long) over the six investigated channels. In addition, in order to evaluate any eventual
effect of the electrode position as well as of the frequency dependence, the correlation has been also
investigated channel by channel and dividing the whole spectrum in three sub-bands of equal length:

• From 3.5 to 12 Hz (18 points), approximately coinciding with Theta and Alpha rhythms;
• From 12.5 to 21 Hz (18 points), approximately coinciding with lower Beta rhythms;
• From 21.5 to 30 Hz (18 points), approximately coinciding with higher Beta rhythms.

The sub-bands choice was made on the basis of a compromise between (i) having bands not too
short (the samples size will impact on the correlation robustness); and (ii) having bands of the same
length (in order to make possible the comparison among them).

All the comparisons were analyzed through multiple repeated measures ANOVAs, and in case of
significance, by performing Duncan’s post-hoc tests.

2.4.4. Mental States Classifier Performance

In order to evaluate also the suitability of such sensors for passive BCI-based applications [26], a
simple classification performance analysis was performed. For this aim, the EEG data recorded while
performing the two mathematical tasks (EASY and HARD) were used. Among the wide range of
machine-learning algorithms, the StepWise Linear Discriminant Analysis (SWLDA) [75] was employed.
Since the purpose of this manuscript is not to evaluate the performance of different algorithms but
only the impact of the different EEG electrodes on this kind of applications, such algorithm was chosen
because of its proved reliability for human workload classification [67,76–78].

For each subject for each EEG device, the EEG data of each mathematical task have been divided
in a 2-min-long segment to use as “Training dataset” and the remaining 1-min-long segment to use as
“Testing dataset”. Two different combinations have been realized: (1) TRAINING equal to the first
2 min and TESTING equal to the last one; (2) TRAINING equal to the last 2 min and TESTING equal
to the first one. In particular, for each subject the features domain consisted of the EEG PSD values of
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the frontal Theta ([3.5 ÷ 7.5] Hz) and parietal Alpha ([4 ÷ 8] Hz) rhythms, since they are considered
and demonstrated to be the more relevant brain activity features related to mental workload [79,80].

Therefore, the analysis of the Area Under the Curve (AUC) of the Receiver Operator Characteristic
(ROC) curve of the classifier was performed [81]. In fact, AUC represents a widely used methodology
to test the performance of a binary classifier: the classification performance can be considered good
with an AUC higher than at least 0.7 [82]. In this case, there are actually two classes in terms of mental
workload, i.e., Easy and Hard, related to the two different difficulty levels of the mathematical task.
For each subject for each device, the AUC values of combinations 1 and 2 were averaged. Finally,
a repeated measures ANOVA was performed on the classification performance in order to investigate
any eventual effect of the electrodes type.

2.4.5. Usability

The usability of each electrode type was evaluated in terms of time necessary for the montage
(that is intrinsically related to the time necessary to adapt the impedances) and comfort perceived
by the subjects wearing the EEG device. In this regard, please consider that the EEG montage was
done by two operators with comparable expertise and strong knowledge of the field, with hundreds of
previous EEG recordings. In particular, the two factors were investigated as follows:

(a) Easiness to use: a repeated measures ANOVA was performed on the montage times;
(b) Comfort: a repeated measures ANOVA was performed on the comfort VAS scores assessed by

the experimental subjects at the end of each repetition; also, the devices ranking was analyzed by
an analysis of frequencies.

In case of significance, Duncan’s post-hoc tests were performed.

3. Results

3.1. Evaluation of the “Time Effect” on the Recordings

The analysis performed on the correlation between signals power spectra between the first and
the three following repetitions of the Open and Closed Eyes tasks (Figure 3) revealed that:

• Independently from the channel and the repetition, all the recorded activities were positively
and significantly (all p < 0.05) correlated with brain activity recorded at the beginning of
the experiment;

• The correlation did not significantly change over time, i.e., from the first to the last repetition
(approximately 75 min after the first one), as revealed by ANOVAs performed for each channel
and for each condition.
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3.2. IAF Estimation

The results in terms of IAF estimation are reported in Figure 4. The ANOVA revealed a significant
effect (F = 7.06; p = 0.0009) related to the devices, i.e., the electrode types. In particular, the Duncan’s
post-hoc test showed that the IAF values estimated through the Quasar electrodes were significantly
different from those one estimated through the other electrode types (all the p < 0.05), while no
differences arose among the latter ones. In terms of Mean Squared Error with respect to the wet
electrodes, the IAF values differed of 0.1 Hz2 (BP Gold), 0.12 Hz2 (Quasar) and 0.09 Hz2 (BP Solid).
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Figure 4. The bar graph represents the mean and the standard deviation of the IAF values estimated
during the CE condition through the four different electrode types. The red asterisk indicates the sample
significantly (p < 0.05) different from the other ones, as demonstrated by the Duncan’s post-hoc test.

3.3. Power Spectra Comparison

The overall results in terms of spectra correlation during the Open and Closed Eyes conditions are
reported in Figure 5. The power spectra of the EEG signals recorded through the three dry electrode
types are all positively and significantly correlated with the power spectrum of the signals recorded
through traditional wet electrodes. In fact, a correlation between two samples with a degree of
freedom equal to 65 (two 67-points-long vectors, thus n-2 = 65) is considered significant (assuming
a p < 0.05) if R (Pearson’s correlation coefficient) is higher than 0.24 [75]. Actually, in this study
the correlations analysis is based on 12 different correlations per device (one for each subject), thus
the significant p-value threshold has been corrected through the Bonferroni correction for multiple
comparisons [83,84]:

α’ = α/n

where α is the targeted value of significancy (i.e., 0.05), n the number of multiple comparisons and
α’ the equivalent value (in our case α’ = 0.05/12 = 0.00415). Therefore, the significant R-threshold
to consider, related to the corrected p-value, is 0.35. Also considering this new threshold after the
multiple comparisons correction, the correlation are still significant.

Of course, the correlations could be not equal to 1 since the recording are not simultaneous but
consecutive. In fact, the analysis over the CNTR electrodes (Figure 3) demonstrated as also by using
the same electrodes, the maximum correlation achievable is close but less than 1. With respect to
the Control electrodes, the signal recorded with the dry electrode types revealed a mean correlation
decreasing of 5% and 9% during respectively Open and Closed Eyes conditions, however the ANOVAs
did not show any significant difference among them (Open Eyes: F = 0.504; p = 0.611. Closed Eyes:
F = 0.448; p = 0.645).
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Figure 5. The bar graphs represent the mean and the standard deviation of the Pearson’s correlation
coefficients between the three dry electrode types and the traditional wet ones during the OE (A) and
CE (B) conditions, including the repeated measures ANOVAs results.

Figure 6 shows how the electrodes position and frequency affect electrode performance during
the OE condition. In particular:

• Figure 6A shows a correlation decreasing (BP Gold = −13%, Quasar = −9%, BP Solid = −17%)
moving from frontal to parietal sites for all the electrode types, however the correlation values
are still significant and high (>0.75 and thus higher than 0.35); the ANOVA performed over each
electrode did not reveal any significant difference except than for F3, where the correlation of the
BP Solid electrode was significantly higher than both the other two electrode types (Duncan test:
p = 0.02 vs. BP Gold, p = 0.01 vs. Quasar);

• Figure 6B shows a correlation decreasing in correspondence of lower beta frequencies (between
12.5 and 21 Hz) for all the electrode types, without any significant difference among them for
each sub-band. Also, considering that for this comparison the correlation degrees of freedom are
equal to 16 (two 18-points-long vectors, thus n-2 = 16) and consequently the significant threshold
R = 0.64 (taking into account the Bonferroni’s multiple comparisons correction), the three dry
electrode types revealed a no-significant mean correlation in such sub-band.
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Figure 6. (A) The bar graph represents the mean and the standard deviation of the Pearson’s correlation
coefficients between the three dry electrode types and the traditional wet ones with respect to the
electrode position. The red asterisk indicates the comparison where the ANOVA revealed significant
differences. (B) The bar graph represents the mean and the standard deviation of the Pearson’s
correlation coefficients between the three dry electrode types and the traditional wet ones with respect
to the frequency. The red triangle indicates the case of non-significant correlation (on average) with
traditional wet electrodes.

Figure 7 shows how the electrodes position and frequency impact on electrode performance.
In particular:

• Figure 7A shows a correlation decreasing moving from frontal to parietal sites for BP Gold (−15%)
and BP Solid (−16%) electrode types, while Quasar type did not show any particular variation
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(≈1%). However, it is important to note that: (i) the correlation values over the frontal sites for BP
Gold and BP solid electrodes were higher than Quasar electrodes; (ii) all the correlation values are
still significant and high (>0.7, and thus higher than 0.35); (iii) the ANOVA performed over each
electrode did not reveal any significant difference except than for P3, where the correlation of the
Quasar electrode was significantly higher than both the other two electrode types (Duncan test:
p = 0.017 vs. BP Gold, p = 0.014 vs. BP Solid);

• Figure 7B shows a correlation decreasing in correspondence of lower beta frequencies (between
12.5 and 21 Hz) for all the electrode types, without any significant difference among them for
each sub-band. Also, considering that for this comparison the correlation degrees of freedom
are equal to 16 (two 18-points-long vectors, thus n-2 = 16) and consequently the significant
threshold R = 0.64, the correlation values of only BP Solid electrode type are still significant
for each sub-band, while BP Gold and Quasar electrodes suffered a significant decreasing in
correspondence of lower Beta frequencies.
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Figure 7. (A) The bar graph represents the mean and the standard deviation of the Pearson’s correlation
coefficients between the three dry electrode types and the traditional wet ones with respect to the
electrode position. The red asterisk indicates the comparison where the ANOVA revealed significant
differences. (B) The bar graph represents the mean and the standard deviation of the Pearson’s
correlation coefficients between the three dry electrode types and the traditional wet ones with respect
to the frequency. The red triangle indicates the case of non-significant correlation (on average) with
traditional wet electrodes.

3.4. Mental States Classification Performance

In terms of workload classification, it was possible to achieve good results of discriminability
between the two classes (EASY and HARD) with all the three dry electrodes types (mean AUC: 0.75 for
BP Gold, 0.75 for Quasar, 0.73 for BP Solid electrodes), not significantly different from the performance
achieved through traditional wet electrodes, as showed by the Repeated measures ANOVA (F = 0.181;
p = 0.909; Figure 8).
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3.5. Usability

The ANOVA performed over the time of montage necessary for each type of devices (i.e., electrode
types) showed a significant effect (Figure 9). In particular, the Duncan post-hoc tests showed that:

• Traditional wet electrodes required the longest times of montage (>5 min), significantly higher
than all the dry types (p = 0.007 vs. BP Gold electrodes, p < 10−4 vs. Quasar and BP Solid
electrodes);

• BP Gold electrodes required a time of montage (≈5 min) significantly lower than traditional wet
electrodes but higher than Quasar (p = 0.026) and BP Gold electrodes (p = 0.04);

• Quasar and BP Solid electrode types required the shortest time of montage (≈3 min), without any
significant difference among them.
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Figure 9. The bar graph represents the mean and the standard deviation of the times of montage of
each device. The red asterisks indicate the samples significantly (p < 0.05) different from the other ones,
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In terms of comfort perceived by the subjects wearing the four devices, the BP Gold electrodes
obtained the worst scores, significantly lower than those ones obtained by the other electrode types
(Duncan test: all p < 104, Figure 10A), while no differences emerged among the other three electrode
types. In terms of preferences, Quasar and BP Solid electrodes have been more often ranked as the
more comfortable device, while the BP Gold as the less comfortable (Figure 10B).
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Figure 10. (A) The bar graph represents the mean and the standard deviation of the Comfort scores
assessed by the subjects after wearing each device. The red asterisk indicates the sample significantly
(p < 0.05) different from the other ones, as demonstrated by the Duncan’s post-hoc tests. (B) At the end
of the experiment the subject had to rank the devices in terms of Comfort, from the most (Position 1)
to the less (Position 4) comfortable. The bar graph represents the number of times (frequencies) each
device has been ranked in each possible position by the subjects.
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4. Discussion

During the last decades great improvements have been made by EEG device manufacturers, so the
most recent EEG devices are no larger than a smartphone, thus portable, and equipped with all kinds
of key features, such as data storage supports, long-life batteries and wireless connection. At the same
time neuroscientific research has produced a great amount of evidences about human brain dynamics
and human cognition and behaviors while working or dealing with everydayness activities, showing
a great interest in bringing EEG wearable devices within real-life applications [26]. Nevertheless,
the EEG devices reliability still lays on recording signals through wet electrodes. Of course, other
than some technical issues, such as in particular the skin-electrode impedance instability over time
because of gel drying, they constituted a big limitation in terms of usability and comfort. For such a
reason, the last decade has been characterized by an increasing interest in EEG dry electrodes, and
several types have been developed and proposed, however the scientific community agrees on the
fact that wet electrodes are still the gold standard and there is the lack of comprehensive evaluations
of these innovative dry electrodes [44]. In this context, the present work aimed at assessing the level
of maturity achieved by EEG dry electrodes industry, by comparing three different types, selected
from international leading companies, and in order to comprise all the different aspects of the dry
electrodes state of art, in terms of material (silicon, gold-coated and solid gel), shape (single or multiple
pins), type of contact (resistive or capacitive) and eventual pre-amplification (i.e., active electrodes).
Such comparison has been carried on to cover both the aspects of signal quality and device usability,
thus providing a very comprehensive approach to the problem.

Before performing the actual analysis comparing the electrodes, the properness of the
experimental setup has been validated. In fact, during these experiments the four devices have
been tested for each subject in a consecutive way (i.e., not simultaneously). Apart from randomizing
the order of the devices testing for each subject in order to prevent any related effect, it was important
to verify that actually the brain activity recorded in the same conditions in different moments is
comparable. The results obtained by employing the CNTR electrodes, never changed during the whole
experiment, confirmed that it is possible to assume a comparable (i.e., it does not significantly change)
brain activity during OE and CE rest conditions during the whole experiment, lasting about 1 h and
half (Figure 3). This result is crucial for the study, since it allows to compare the different systems
assessing that the measured differences are mainly due to the different electrode types and not to the
different experimental times.

Regarding the signal quality, the first analysis consisted in analyzing the estimation of
the Individual Alpha Frequency. The results (Figure 4) revealed that only Quasar electrodes
provided results significantly different from those one obtained through traditional wet electrodes,
overestimating the IAF with a MSE of 0.12 Hz2. Both the BP gold and the BP solid gel electrodes
were able to estimate the IAF in a non-significantly different way from the wet electrodes, with a
remarkable MSE of 0.09 Hz2 (<1%) related to BP solid gel electrodes. In any case, also the error of
Quasar electrodes (<0.2 Hz) could be considered negligible depending on the application. Considering
that this parameter, i.e., the IAF, is estimated during Closed Eyes condition, this result does not surprise
because of the results obtained in terms of spectra correlation.

In fact, the results in terms of power spectra correlation between dry and wet electrodes
highlighted positive high and significant correlations for almost all the comparisons. In particular,
during the Open Eyes condition, the overall correlation for all the devices over the frequencies range
from 2 to 35 Hz was equal to 0.9 (in terms of R as Pearson’s correlation coefficient). This result is
even more remarkable if considering that (i) for a correlation with degrees of freedom equal to 65,
as in this case, the R threshold related to a significance level of p = 0.00415 (equivalent to p = 0.05
corrected for 12 multiple comparisons through Bonferroni method [83]) is equal to R = 0.35; (ii) since
the four devices have been recorded in a consecutive (i.e., not simultaneous) way, it is not possible to
achieve correlations of 1, as demonstrated by the Control electrodes (Figure 5). With respect to the
latter, the mean correlation decreasing is of about the 5%, however the three dry types did not show
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any significant difference among them. Also, during the Closed Eyes condition, the overall correlation
for all the devices over the frequencies range from 2 to 35 Hz was positive, high and significant,
with a mean R equal to 0,83 and without any significant difference among the 3 dry types (Figure 5).
However, it seems that during Closed Eyes the dry electrodes worked worse than during Open Eyes
condition, since the mean correlation decreased from 0.9 to 0.83, anyhow it is important to consider
that also the correlation over the Control electrodes decreased from 0.95 to 0.9 (Figure 3). Therefore
such decreasing, or at least a part of it, is probably due to a certain difference in terms of mental states
(we are assuming a certain similarity among the power spectra between the same conditions recorded
in different moments, but it is not possible to quantify it). Also in this case, the results are remarkable
if considering that (i) the correlation values are much higher than R = 0.35 (R threshold related to
p < 0.00415, equivalent to p = 0.05 for 12 multiple comparisons); (ii) the mean correlation decreasing
with respect to the Control electrodes is of about the 9%, however the three dry types did not show
any significant difference among them.

The notable results in terms of correlation are confirmed if considering the single channels and
sub-bands (Figures 6 and 7): despite a small decreasing in terms of correlation moving from frontal to
parietal sites (probably due to the hairs), significant correlations have been obtained for all the dry
types during Open Eyes condition. Only over the F3 site, the BP solid electrodes provided correlation
values significantly higher than the other two solutions, while within the lower Beta band the mean
correlation between all the dry electrode types and wet electrodes was not significant on average.
Also for the Closed Eyes condition, significant correlations have been obtained for all the dry types for
each channel and for each sub-band. Only over the P3 site, the Quasar electrodes provided correlation
values significantly higher than the other two solutions. Actually, also during Closed Eyes condition
a correlation decreasing appeared moving from frontal to parietal sites for BP Gold (−15%) and
BP Solid (−16%) electrode types, while Quasar type did not show any particular variation (≈1%).
However, it is important to note that the correlation values over the frontal sites for BP Gold and BP
solid electrodes were higher than Quasar electrodes. In other words, it seems that Quasar electrodes
worked slightly worse over the frontal electrodes, but their performance remained stable over the scalp.
On the contrary, BP Gold and BP Solid electrodes worked better over the frontal sites but suffered over
the hairy ones. However, it is important to remark that these observations are made just on trends,
since non-significant differences arose from statistical analysis.

Finally, in terms of mental states classification, the use of the three dry electrode types was
equivalent to the employment of wet electrodes, since statistical analysis did not reveal any significant
difference (Figure 8).

Regarding the aspects related to usability, first of all the dry electrodes were able to reduce
drastically the time necessary to plug the system: the time of montage of the three dry electrodes
were all significantly lower than that one of wet electrodes (Figure 9). In addition, Quasar and
BP Solid electrodes allowed to even halve the times of montage of wet electrodes, they were also
significantly lower than those one of BP Gold electrodes while did not significantly differ among them.
The exponential decreasing of time needed to prepare the EEG system is even more remarkable if
considering that, in case of wet systems, it is function of the number of electrodes (i.e., it is the sum of
the times to adapt the impedances related to all the electrodes). In the present research no more than
10 EEG channels (including references and ground) have been employed, nevertheless the advantage
due to the use of dry technology will become more and more relevant while increasing the number of
electrodes. High-resolution EEG [85] are usually based on 64 up to 256 electrodes, in this case reliable
dry technology will produce incomparable benefits. Finally, in terms of comfort perceived by the
user (Figure 10), the results revealed that the BP Gold electrodes were not as comfortable as the other
competitors. If such result could imply that actually wet electrodes are not so annoying, it has to be
taken into account that in such evaluation the factor “pain” was more important that the annoyance
due to have gel and abrasion over own scalp, probably also because of the few electrodes employed
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(7). However, in terms of preference (Figure 10B), the subjects used to prefer Quasar and BP Solid
electrodes more than wet ones.

Before concluding, it is important to take into account that the electrodes compared within this
study have been used jointly with their own acquisition systems, therefore it could be an additional
variable influencing the results. It is also true that it is not possible to use these electrodes with
whatever EEG device, thus the overall performance (in terms of signal quality) intrinsically depend on
both the factors, i.e., the electrodes and the acquisition system.

In conclusion, the dry electrodes employed during this research, selected among the more recent
solutions provided by EEG industry, revealed that a very high level of maturity has been reached
in this field, both in terms of reliability (i.e., signal quality) and usability. No particular differences
arose among them in terms of signal quality, and of course the aim of the research was not to identify
a “winner”, however because of the great success achieved by Quasar and BP Solid electrodes also
in terms of usability and comfort, it is possible to suggest that solutions based on multiple-pins and
soft materials (such as the solid gel) are preferable with respect to the single pin solutions. However,
it is possible to claim that actually the gap between wet and dry electrodes is ready to die out, and it
is time for literally a “dry revolution” within the EEG research field. This important change would
have great scientific and economical consequences, if considering that a recent Marketing Report
(RNR Research, [86]) currently estimates an expected market of one Billion USD for Wearable EEG
Device with a Compounded Average Growth Rate of 7.13% over the next 10 years. If considering
that recently practical dry electrodes have been identified as one of the two disruptive technologies
in BCI research [36,37], the results of this research pave the way for a more intensive employment
of dry technology within the BCI research and applications. Recent works already validated in
highly realistic settings BCI-based systems able to support operators while working [28,87], so in
this context the legitimation of dry technology will facilitate the acceptability of BCI solutions within
everydayness applications.

The present work does not provide a quantification of morphological signal characteristics,
such as signal-to-noise ratio, however the idea at the basis of the present work, accordingly to the
recent trends within the BCI domain [26,88,89], is that, despite an unavoidable decreasing in signal
quality, it is possible to consider dry systems reliable for non-clinical and goal-oriented applications
(e.g., discriminate two different mental states).

Finally, according to the needs highlighted by recent works [44], this work also suggests a
comprehensive methodology to evaluate different electrode concepts from different perspectives.
The results of the present research appear really impacting for the community but still preliminary,
since they were derived from a sample of 12 subjects with “not-too-long” hairs (<8 cm), therefore future
works would aim at enlarging the sample size and phenotype as well as integrating these comparative
analyses with new dry electrodes concepts.

5. Conclusions

The present work aimed at assessing the level of maturity achieved by EEG dry electrodes industry,
by comparing three different types with traditional wet electrodes, still considered as gold-standard
in terms of signal quality. The results of this study pointed out the great level of quality achieved
by dry solutions, since all the tested electrodes were able to guarantee the same quality levels of wet
electrodes, allowing at the same time to significantly reduce times of montage and increase users’
comfort. In particular, for the latter aspect solid gel and multiple-spikes solutions overcame the
single-pin one. However, in general it is possible to claim that finally it is time for the “dry revolution”
within the EEG applied research.
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International Publishing: Cham, Switzerland, 2016; pp. 373–381.

25. Casson, A.J.; Smith, S.; Duncan, J.S.; Rodriguez-Villegas, E. Wearable EEG: What is it, why is it needed and
what does it entail? In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, Vancouver, BC, Canada, 21–14 August 2008; IEEE: Vancouver, BC, Canada,
2008; pp. 5867–5870.

26. Aricò, P.; Borghini, G.; Flumeri, G.D.; Sciaraffa, N.; Babiloni, F. Passive BCI beyond the lab: Current trends
and future directions. Physiol. Meas. 2018, 39, 08TR02. [CrossRef]

27. Zander, T.O.; Kothe, C.; Jatzev, S.; Gaertner, M. Enhancing Human-Computer Interaction with Input from
Active and Passive Brain-Computer Interfaces. In Brain-Computer Interfaces; Tan, D.S., Nijholt, A., Eds.;
Human-Computer Interaction Series; Springer: London, UK, 2010; pp. 181–199.

28. Aricò, P.; Borghini, G.; Di Flumeri, G.; Colosimo, A.; Bonelli, S.; Golfetti, A.; Pozzi, S.; Imbert, J.-P.; Granger, G.;
Benhacene, R.; et al. Adaptive Automation Triggered by EEG-Based Mental Workload Index: A Passive
Brain-Computer Interface Application in Realistic Air Traffic Control Environment. Front. Hum. Neurosci.
2016, 10, 539. [CrossRef]

29. Sinclair, C.M.; Gasper, M.C.; Blum, A.S. Basic Electronics in Clinical Neurophysiology. In The Clinical
Neurophysiology Primer; Blum, A.S., Rutkove, S.B., Eds.; Humana Press: Totowa, NJ, USA, 2007; pp. 3–18.

30. Prutchi, D.; Norris, M. Design and Development of Medical Electronic Instrumentation: A Practical Perspective of
the Design, Construction, and Test of Medical Devices; John Wiley & Sons: London, UK, 2005.

31. Ott, H.W. Noise-Reduction Techniques in Electronic Systems, 2nd ed.; Wiley: New York, NY, USA, 1988.
32. Usakli, A.B. Improvement of EEG Signal Acquisition: An Electrical Aspect for State of the Art of Front End.

Available online: https://www.hindawi.com/journals/cin/2010/630649/abs/ (accessed on 18 January
2019).

33. Lin, C.T.; Liao, L.D.; Liu, Y.H.; Wang, I.J.; Lin, B.S.; Chang, J.Y. Novel dry polymer foam electrodes for
long-term EEG measurement. IEEE Trans. Biomed. Eng. 2011, 58, 1200–1207.

34. Gargiulo, G.; Bifulco, P.; Calvo, R.A.; Cesarelli, M.; Jin, C.; Schaik, A. van A mobile EEG system with dry
electrodes. In Proceedings of the 2008 IEEE Biomedical Circuits and Systems Conference, Baltimore, MD,
USA, 20–22 November 2008; pp. 273–276.

35. Taheri, B.A.; Knight, R.T.; Smith, R.L. A dry electrode for EEG recording. Electroencephalogr. Clin. Neurophysiol.
1994, 90, 376–383. [CrossRef]

http://dx.doi.org/10.3389/fnhum.2018.00231
http://dx.doi.org/10.1016/j.ymeth.2008.07.006
https://ieeexplore.ieee.org/abstract/document/8037544
https://ieeexplore.ieee.org/abstract/document/8037544
http://dx.doi.org/10.1016/0301-0082(89)90007-5
http://dx.doi.org/10.1088/1361-6579/aad57e
http://dx.doi.org/10.3389/fnhum.2016.00539
https://www.hindawi.com/journals/cin/2010/630649/abs/
http://dx.doi.org/10.1016/0013-4694(94)90053-1


Sensors 2019, 19, 1365 19 of 21

36. Gevins, A.S.; Durousseau, D.; Libove, J. Dry Electrode Brain Wave Recording System. U.S. Patent
US4967038A, 30 October 1990.

37. Guger, C.; Krausz, G.; Allison, B.Z.; Edlinger, G. Comparison of Dry and Gel Based Electrodes for P300
Brain–Computer Interfaces. Front. Neurosci. 2012, 6, 60. [CrossRef]

38. Müller-Putz, G.R.; Brunner, C.; Bauernfeind, G.; Blefari, M.L.; del Millan, J.R.; Real, R.G.L.; Kübler, A.;
Mattia, D.; Pichiorri, F.; Schettini, F.; et al. The Future in Brain/Neural Computer Interaction: Horizon 2020; EU &
Graz University of Techology: Styria, Austria, 2015.

39. Gargiulo, G.; Calvo, R.A.; Bifulco, P.; Cesarelli, M.; Jin, C.; Mohamed, A.; van Schaik, A. A new EEG recording
system for passive dry electrodes. Clin. Neurophysiol. 2010, 121, 686–693. [CrossRef]

40. Zander, T.O.; Lehne, M.; Ihme, K.; Jatzev, S.; Correia, J.; Kothe, C.; Picht, B.; Nijboer, F. A Dry EEG-System for
Scientific Research and Brain–Computer Interfaces. Front. Neurosci. 2011, 5, 53. [CrossRef]

41. Sellers, E.W.; Turner, P.; Sarnacki, W.A.; McManus, T.; Vaughan, T.M.; Matthews, R. A Novel Dry Electrode
for Brain-Computer Interface. In Proceedings of the Human-Computer Interaction. Novel Interaction Methods and
Techniques; Jacko, J.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 623–631.

42. Tallgren, P.; Vanhatalo, S.; Kaila, K.; Voipio, J. Evaluation of commercially available electrodes and gels for
recording of slow EEG potentials. Clin. Neurophysiol. 2005, 116, 799–806. [CrossRef]

43. Grozea, C.; Voinescu, C.D.; Fazli, S. Bristle-sensors—Low-Cost flexible passive dry EEG electrodes for
neurofeedback and BCI applications. J. Neural Eng. 2011, 8, 025008. [CrossRef]

44. Lopez-Gordo, M.A.; Sanchez-Morillo, D.; Valle, F.P. Dry EEG Electrodes. Sensors 2014, 14, 12847–12870.
[CrossRef]

45. Chi, Y.M.; Wang, Y.-T.; Wang, Y.; Maier, C.; Jung, T.-P.; Cauwenberghs, G. Dry and Noncontact EEG Sensors
for Mobile Brain–Computer Interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 228–235. [CrossRef]

46. Toyama, S.P.; Takano, K.P.; Kansaku, K.M. A Non-Adhesive Solid-Gel Electrode for a Non-Invasive
Brain–Machine Interface. Front. Neurol. 2012, 3, 114. [CrossRef]

47. Searle, A.; Kirkup, L. A direct comparison of wet, dry and insulating bioelectric recording electrodes.
Physiol. Meas. 2000, 21, 271. [CrossRef]

48. Duvinage, M.; Castermans, T.; Petieau, M.; Hoellinger, T.; Cheron, G.; Dutoit, T. Performance of the Emotiv
Epoc headset for P300-based applications. Biomed. Eng. OnLine 2013, 12, 56. [CrossRef]

49. Roesler, O.; Bader, L.; Forster, J.; Hayashi, Y.; Hessler, S.; Suendermann-Oeft, D. Comparison of EEG Devices
for Eye State Classification. In Proceedings of the AIHLS, Kusadasi-Aydin, Turkey, 19–22 October 2014.

50. Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and
analysis. Brain Res. Rev. 1999, 29, 169–195. [CrossRef]

51. Zarjam, P.; Epps, J.; Chen, F.; Lovell, N.H. Estimating cognitive workload using wavelet entropy-based
features during an arithmetic task. Comput. Biol. Med. 2013, 43, 2186–2195. [CrossRef]

52. Logie, R.H.; Gilhooly, K.J.; Wynn, V. Counting on working memory in arithmetic problem solving.
Mem. Cognit. 1994, 22, 395–410. [CrossRef]

53. Imbo, I.; Vandierendonck, A.; Rammelaere, S.D. The role of working memory in the carry operation of
mental arithmetic: Number and value of the carry. Q. J. Exp. Psychol. 2007, 60, 708–731. [CrossRef]

54. Borghini, G.; Aricò, P.; Di Flumeri, G.; Colosimo, A.; Storti, S.F.; Menegaz, G.; Fiorini, P.; Babiloni, F.
Neurophysiological Measures for Users’ Training Objective Assessment During Simulated Robot-Assisted
Laparoscopic Surgery. In Proceedings of the 2016 38th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016.

55. Borghini, G.; Aricò, P.; Di Flumeri, G.; Sciaraffa, N.; Colosimo, A.; Herrero, M.-T.; Bezerianos, A.; Thakor, N.V.;
Babiloni, F. A New Perspective for the Training Assessment: Machine Learning-Based Neurometric for
Augmented User’s Evaluation. Front. Neurosci. 2017, 11, 325. [CrossRef]

56. Easycap Catalogue. Available online: https://www.easycap.de/wordpress/wp-content/uploads/2018/02/
Pxx-Easycap-sintered-Ag-AgCl-bare-sensors.pdf (accessed on 7 January 2019).

57. EBNeuro BeMicro. Available online: http://www.ebneuro.biz/it/neurologia/ebneuro/eeg-ep/be-micro
(accessed on 7 January 2019).

58. SEI EMG Catalogue. Available online: http://www.seiemg.it/EMG_EEG_EN.pdf (accessed on 7 January
2019).

59. BrainProducts Homepage. Available online: https://www.brainproducts.com/index.php (accessed on
7 January 2019).

http://dx.doi.org/10.3389/fnins.2012.00060
http://dx.doi.org/10.1016/j.clinph.2009.12.025
http://dx.doi.org/10.3389/fnins.2011.00053
http://dx.doi.org/10.1016/j.clinph.2004.10.001
http://dx.doi.org/10.1088/1741-2560/8/2/025008
http://dx.doi.org/10.3390/s140712847
http://dx.doi.org/10.1109/TNSRE.2011.2174652
http://dx.doi.org/10.3389/fneur.2012.00114
http://dx.doi.org/10.1088/0967-3334/21/2/307
http://dx.doi.org/10.1186/1475-925X-12-56
http://dx.doi.org/10.1016/S0165-0173(98)00056-3
http://dx.doi.org/10.1016/j.compbiomed.2013.08.021
http://dx.doi.org/10.3758/BF03200866
http://dx.doi.org/10.1080/17470210600762447
http://dx.doi.org/10.3389/fnins.2017.00325
https://www.easycap.de/wordpress/wp-content/uploads/2018/02/Pxx-Easycap-sintered-Ag-AgCl-bare-sensors.pdf
https://www.easycap.de/wordpress/wp-content/uploads/2018/02/Pxx-Easycap-sintered-Ag-AgCl-bare-sensors.pdf
http://www.ebneuro.biz/it/neurologia/ebneuro/eeg-ep/be-micro
http://www.seiemg.it/EMG_EEG_EN.pdf
https://www.brainproducts.com/index.php


Sensors 2019, 19, 1365 20 of 21

60. BrainProducts LiveAmp. Available online: https://www.brainproducts.com/productdetails.php?id=63
(accessed on 7 January 2019).

61. Matthews, R.; Turner, P.J.; McDonald, N.J.; Ermolaev, K.; Manus, T.; Shelby, R.A.; Steindorf, M. Real
time workload classification from an ambulatory wireless EEG system using hybrid EEG electrodes.
In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 5871–5875.

62. Quasar Homepage. Available online: http://www.quasarusa.com/products_dsi.htm (accessed on
7 January 2019).

63. WearableSensing DSI-7. Available online: https://wearablesensing.com/products/dsi-7-wireless-dry-eeg-
headset/ (accessed on 7 January 2019).

64. WearableSensing Homepage. Available online: https://wearablesensing.com/ (accessed on 7 January 2019).
65. Blanco, S.; Garcia, H.; Quiroga, R.Q.; Romanelli, L.; Rosso, O.A. Stationarity of the EEG series. IEEE Eng.

Med. Biol. Mag. 1995, 14, 395–399. [CrossRef]
66. Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including

independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [CrossRef]
67. Di Flumeri, G.; Borghini, G.; Aricò, P.; Colosimo, A.; Pozzi, S.; Bonelli, S.; Golfetti, A.; Kong, W.; Babiloni, F.

On the Use of Cognitive Neurometric Indexes in Aeronautic and Air Traffic Management Environments.
In Symbiotic Interaction; Blankertz, B., Jacucci, G., Gamberini, L., Spagnolli, A., Freeman, J., Eds.; Springer
International Publishing: Cham, Switzerland, 2015; Volume 9359, pp. 45–56. ISBN 978-3-319-24916-2.

68. Grandy, T.H.; Werkle-Bergner, M.; Chicherio, C.; Schmiedek, F.; Lövdén, M.; Lindenberger, U. Peak individual
alpha frequency qualifies as a stable neurophysiological trait marker in healthy younger and older adults.
Psychophysiology 2013, 50, 570–582. [CrossRef]

69. Di Flumeri, G.; Aricó, P.; Borghini, G.; Colosimo, A.; Babiloni, F. A new regression-based method for the eye
blinks artifacts correction in the EEG signal, without using any EOG channel. In Proceedings of the 2016
38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Orlando, FL, USA, 16–20 August 2016; pp. 3187–3190.

70. Cartocci, G.; Cherubino, P.; Rossi, D.; Modica, E.; Maglione, A.G.; di Flumeri, G.; Babiloni, F. Gender
and Age Related Effects While Watching TV Advertisements: An EEG Study. Available online: https:
//www.hindawi.com/journals/cin/2016/3795325/abs/ (accessed on 18 January 2019).

71. Cartocci, G.; Maglione, A.G.; Rossi, D.; Modica, E.; Borghini, G.; Malerba, P.; Piccioni, L.O.; Babiloni, F.
Alpha and Theta EEG Variations as Indices of Listening Effort to Be Implemented in Neurofeedback Among
Cochlear Implant Users. In Proceedings of the Symbiotic Interaction; Ham, J., Spagnolli, A., Blankertz, B.,
Gamberini, L., Jacucci, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 30–41.

72. Smit, C.M.; Wright, M.J.; Hansell, N.K.; Geffen, G.M.; Martin, N.G. Genetic variation of individual alpha
frequency (IAF) and alpha power in a large adolescent twin sample. Int. J. Psychophysiol. 2006, 61, 235–243.
[CrossRef]

73. Doppelmayr, M.; Klimesch, W.; Pachinger, T.; Ripper, B. Individual differences in brain dynamics: Important
implications for the calculation of event-related band power. Biol. Cybern. 1998, 79, 49–57. [CrossRef]

74. Elul, R. Gaussian behavior of the electroencephalogram: Changes during performance of mental task. Science
1969, 164, 328–331. [CrossRef]

75. Bishop, Y.M.M.; Fienberg, S.E.; Holland, P.W.; Light, R.J.; Mosteller, F. Book Review: Discrete Multivariate
Analysis: Theory and Practice. Appl. Psychol. Meas. 1977, 1, 297–306. [CrossRef]

76. Berka, C.; Levendowski, D.J.; Lumicao, M.N.; Yau, A.; Davis, G.; Zivkovic, V.T.; Olmstead, R.E.;
Tremoulet, P.D.; Craven, P.L. EEG correlates of task engagement and mental workload in vigilance, learning,
and memory tasks. Aviat. Space Environ. Med. 2007, 78, B231–B244.

77. Yin, Z.; Zhang, J. Identification of temporal variations in mental workload using
locally-linear-embedding-based EEG feature reduction and support-vector-machine-based clustering and
classification techniques. Comput. Methods Programs Biomed. 2014, 115, 119–134. [CrossRef]

78. Aricò, P.; Borghini, G.; Di Flumeri, G.; Colosimo, A.; Graziani, I.; Imbert, J.P.; Granger, G.; Benhacene, R.;
Terenzi, M.; Pozzi, S.; et al. Reliability over time of EEG-based mental workload evaluation during Air Traffic
Management (ATM) tasks. In Proceedings of the Annual International Conference of the IEEE Engineering
in Medicine and Biology Society Conference, Honolulu, HI, USA, 17–21 July 2015; pp. 7242–7245.

https://www.brainproducts.com/productdetails.php?id=63
http://www.quasarusa.com/products_dsi.htm
https://wearablesensing.com/products/dsi-7-wireless-dry-eeg-headset/
https://wearablesensing.com/products/dsi-7-wireless-dry-eeg-headset/
https://wearablesensing.com/
http://dx.doi.org/10.1109/51.395321
http://dx.doi.org/10.1016/j.jneumeth.2003.10.009
http://dx.doi.org/10.1111/psyp.12043
https://www.hindawi.com/journals/cin/2016/3795325/abs/
https://www.hindawi.com/journals/cin/2016/3795325/abs/
http://dx.doi.org/10.1016/j.ijpsycho.2005.10.004
http://dx.doi.org/10.1007/s004220050457
http://dx.doi.org/10.1126/science.164.3877.328
http://dx.doi.org/10.1177/014662167700100218
http://dx.doi.org/10.1016/j.cmpb.2014.04.011


Sensors 2019, 19, 1365 21 of 21

79. Gevins, A.; Smith, M.E. Neurophysiological measures of cognitive workload during human-computer
interaction. Theor. Issues Ergon. Sci. 2003, 4. [CrossRef]

80. Borghini, G.; Astolfi, L.; Vecchiato, G.; Mattia, D.; Babiloni, F. Measuring neurophysiological signals in
aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci.
Biobehav. Rev. 2014, 44, 58–75. [CrossRef]

81. Bamber, D. The area above the ordinal dominance graph and the area below the receiver operating
characteristic graph. J. Math. Psychol. 1975, 12, 387–415. [CrossRef]

82. Fawcett, T. An Introduction to ROC Analysis. Pattern Recogn. Lett. 2006, 27, 861–874. [CrossRef]
83. Armstrong, R.A. When to use the Bonferroni correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508.

[CrossRef]
84. Dunn, O.J. Multiple Comparisons among Means. J. Am. Stat. Assoc. 1961, 56, 52–64. [CrossRef]
85. Gavaret, M.; Maillard, L.; Jung, J. High-resolution EEG (HR-EEG) and magnetoencephalography (MEG).

Neurophysiol. Clin. Neurophysiol. 2015, 45, 105–111. [CrossRef]
86. Research and Markets Ltd. Global Wearable Devices Market Size, Market Share, Application Analysis,

Regional Outlook, Growth Trends, Key Players, Competitive Strategies and Forecasts, 2018 to 2026. Available
online: https://www.researchandmarkets.com/reports/4620337/global-wearable-devices-market-size-
market (accessed on 21 January 2019).

87. Abbass, H.A.; Tang, J.; Amin, R.; Ellejmi, M.; Kirby, S. Augmented Cognition using Real-time EEG-based
Adaptive Strategies for Air Traffic Control. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2014, 58, 230–234.
[CrossRef]

88. Borghini, G.; Aricò, P.; Di Flumeri, G.; Sciaraffa, N.; Babiloni, F. Correlation and Similarity between Cerebral
and Non-Cerebral Electrical Activity for User’s States Assessment. Sensors 2019, 19, 704. [CrossRef]

89. Arico, P.; Borghini, G.; Di Flumeri, G.; Bonelli, S.; Golfetti, A.; Graziani, I.; Pozzi, S.; Imbert, J.P.; Granger, G.;
Benhacene, R.; et al. Human Factors and Neurophysiological Metrics in Air Traffic Control: A Critical
Review. IEEE Rev. Biomed. Eng. 2017, 10, 250–263. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/14639220210159717
http://dx.doi.org/10.1016/j.neubiorev.2012.10.003
http://dx.doi.org/10.1016/0022-2496(75)90001-2
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1111/opo.12131
http://dx.doi.org/10.1080/01621459.1961.10482090
http://dx.doi.org/10.1016/j.neucli.2014.11.011
https://www.researchandmarkets.com/reports/4620337/global-wearable-devices-market-size-market
https://www.researchandmarkets.com/reports/4620337/global-wearable-devices-market-size-market
http://dx.doi.org/10.1177/1541931214581048
http://dx.doi.org/10.3390/s19030704
http://dx.doi.org/10.1109/RBME.2017.2694142
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Protocol 
	The four EEG Electrode Types 
	Traditional Wet Ag/AgCl Electrodes (Wet) 
	Active Dry Single Gold Pin-Based Electrodes (BP Gold) 
	Hybrid Dry Multiple Spikes-Based Electrodes (Quasar) 
	Passive Dry Solid-Gel Based Electrodes (BP Solid) 

	Data Acquisition and Processing 
	Performed Analysis 
	Evaluation of the “Time Effect” on the Recordings 
	IAF Estimation 
	Power Spectra Comparison 
	Mental States Classifier Performance 
	Usability 


	Results 
	Evaluation of the “Time Effect” on the Recordings 
	IAF Estimation 
	Power Spectra Comparison 
	Mental States Classification Performance 
	Usability 

	Discussion 
	Conclusions 
	References

